
Magnitude Simba SDK

Developing Connectors for SQL-Capable Data Stores
Version 10.3.0
January 2024

Copyright

This document was released in January 2024.

Copyright ©2014–2024 Magnitude Software, Inc., an insightsoftware company. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written
permission from Magnitude, Inc.

The information in this document is subject to change without notice. Magnitude, Inc. strives to keep this
information accurate but does not warrant that this document is error-free.

Any Magnitude product described herein is licensed exclusively subject to the conditions set forth in
your Magnitude license agreement.

Simba, the Simba logo, SimbaEngine, and Simba Technologies are registered trademarks of Simba
Technologies Inc. in Canada, the United States and/or other countries. All other trademarks and/or
servicemarks are the property of their respective owners.

All other company and product names mentioned herein are used for identification purposes only and
may be trademarks or registered trademarks of their respective owners.

Information about the third-party products is contained in a third-party-licenses.txt file that is packaged
with the software.

Contact Us

Magnitude Software, Inc.

www.magnitude.com

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
2

http://www.magnitude.com/
http://www.magnitude.com/

About This Guide

Purpose

This guide explains how to use the Magnitude Simba SDK to document what
SQL grammar the JSQLC++ engine supports.

Audience

The guide is intended for developers who have created a connector with the Simba
SDK. This guide is also intended for end users of the Simba SDK.

Knowledge Prerequisites

To use the Simba SDK, the following knowledge is helpful:

l Familiarity with the platform on which you are using the Simba SDK.
l Ability to use the data store to which the Simba SDK is connecting.
l An understanding of the role of ODBC or JDBC technologies and driver
managers in connecting to a data store.

l Experience creating and configuring ODBC or JDBC connections.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
3

http://www.magnitude.com/

Variables Used in this Document

The following variables are used in this document:

Variable Description

[DRIVER_NAME] The name of your connector, as used in Windows registry
keys and names of configuration files.

[INSTALL_DIR] Installation directory for the Simba SDK.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
4

http://www.magnitude.com/

Contents

Contents

Introducing the Simba SDK 8
Creating a Custom Connector with the Simba SDK 8

Example - Build an ODBC Connector for a SQL-Capable Data Store 9

Example - Build a Client/Server Solution 11

Implementation Options 13

Library Components 17

Sample Connectors and Projects 21

Building Blocks for a DSI Implementation 24

Getting Started 28

Frequently Asked Questions 29

Core Features 33
Fetching Metadata for Catalog Functions 33

Adding Custom Metadata Columns 35

Overriding the Value of Default Properties 38

Implementing Logging 41

Adding Custom Connection and Statement Properties 45

Handling Connections 47

Creating and Using Dialogs 51

Canceling Operations 53

Handling Transactions 54

Bulk Fetch in the C++ SDK 60

Parsing ODBC and JDBC Escape Sequences 82

Step 1: Implement Your Custom IReplacer 88

Step 2: Create an Instance of ODBCEscaper 91

Step 3: Ensure Additional Requirements are Met 92

Errors, Exceptions, and Warnings 94
Handling Errors and Exceptions 94

Posting Warning Messages 97

Including Error Message Files 99

Localizing Messages 102

Multithreading 107

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
5

http://www.magnitude.com/

Using the Thread Class (C++ only) 107

Using the ThreadPool Class 107

Asynchronous ODBC Support 108

Critical Section Locks 110

Concurrency Support 111

API Overview 113
DSI API 113

API Overview 115

Lifecycle of DSI Objects 118

Working With the Java API 119

Data Types 129
SQL Data Types in the C++ SDK 129

Date, Time and DateTime Types 132

Example: Variable-Length Data 134
SQL DataTypes in the Java SDK 135

Interval Conversions 137

Adding Custom SQLDataType 139

ODBC Custom C Data Types 141

Specifications 145
Supported Platforms 145

Supported ODBC/SQL Functions 146

Supported SQL Conformance Level 149

Methods 151
IStatement::ExecuteBatch() 151

Compiling Your Connector 154
Upgrading Your Makefile to 10.1 154

C++ on Windows 165

C# on Windows 169

C# on Linux, Unix, and macOS 172

Java on Windows 172

C++ on Linux, Unix, and macOS 175

Productizing Your Connector 181
Packaging Your Connector 181

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
6

http://www.magnitude.com/

Adding a DSN Configuration Dialog 188

Rebranding Your Connector 189

Using INI Files for Connector Configuration on Windows 189

Logging to Event Tracing for Windows (ETW) 192

Testing your DSII 206
Testing OnWindows 206

Testing On Linux, Unix, and MacOS 209

Driver Manager Encodings on Linux, Unix, and MacOS 211

Solving Common Problems 212

Error Messages Encountered During Development 214

Contact Us 217

Third-Party Trademarks 218

Third Party Licenses 219

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
7

http://www.magnitude.com/

Introducing the Simba SDK

The Simba Software Development Kit (SDK) is a collection of database access tools
packaged in a flexible, reusable set of components. These components are used to
create custom database connectors for any data store, even if the data store is not
SQL-capable. Connectors can be built to access both local and remote data stores.

This guide introduces the components of the Magnitude Simba SDK and explains how
you can use them to create custom connectors for ODBC, JDBC, OLE DB and
ADO.net applications.

Note:

This guide explains how to build a connector for data stores that support SQL.
If you want to build a connector for data stores that do not support SQL, see
Developing Connectors for Data Stores Without SQL.

You may find the HTML version of this guide easier to use. See Developing
Connectors for SQL-capable Data Stores.

Creating a Custom Connector with the Simba SDK

The components of the Simba SDK implement all the required functionality of ODBC,
JDBC, OLE DB, and ADO.net, as well as handling session management, state
management, data conversion, and error checking. These components provide an
abstraction layer to insulate your underlying connector functionality from any changes
to data access standards. By basing a custom connector on the Simba SDK, you can
leverage the experience of leaders in data connectivity.

For data stores that do not support SQL, the Simba SDK provides an SQL parser and
an execution engine to translate between SQL commands and your custom datastore
API.

For data stores requiring remote deployment, the Simba SDK allows you to re-build
your existing connector into a server for a client/ server deployment. This allows you to
build your connector as a server that reside near data source, then deploy an ODBC or
a JDBC client that handles communication with the end user's application. For more
information about client-server deployment, see the SimbaClientServer User Guide at
http://www.simba.com/resources/sdk/documentation/.

Data Store Interface Implementation (DSII)

To write a custom connector using the Simba SDK, you write a component called the
"DSI implementation" to access your data store. You then link this component with the

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
8

Introducing the Simba SDK

http://cdn.simba.com/products/SEN/doc/development_guides/nosql
http://cdn.simba.com/products/SEN/doc/development_guides/sql
http://cdn.simba.com/products/SEN/doc/development_guides/sql
http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

Simba SDK components, which takes care of meeting the data access standards, and
optionally converting SQL commands to commands that your data store can
understand. The result is a shared object: a .dylib, .jar, or .dll, .so file, depending
on your development platform. Applications, such as Tableau or Microsoft Excel, use
this shared object to access your data store, even if your data store is not SQL-
enabled.

Example - Build an ODBC Connector for a SQL-Capable Data Store

The easiest custom ODBC connector you can build with the Simba SDK is a
standalone connector connecting to an SQL-capable data store. In this configuration,
the application (such as Tableau or Excel) creates SQL queries and sends them to the
ODBC connector. The ODBC connector can choose to modify these queries, then
sends them to the data store. The data store executes the SQL queries and creates a
result set. Finally, the ODBC connector moves the result set from the data store back
to the application.

This flow of control is illustrated below:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
9

Introducing the Simba SDK

http://www.magnitude.com/

Note:

The Simba SDK provides a similar solution for JDBC, OLE DB, and ADO.net
applications.

The following sections describe the components shown in the above diagram.

SimbaODBC Component

For data stores that are SQL-capable, your custom ODBC connector is composed of
the SimbaODBC component and your DSI implementation. The SimbaODBC
component implements most of the connector functionality, including:

l session and statement management
l abstracting and implementing the low-level requirements of the ODBC API
l error checking

Note:

When changes are made to the ODBC API, or when applications change how
they use the ODBC API, the Simba SDK incorporates these changes
transparently. As a result, connectors based on the Simba SDK can handle
these changes without code rewrites.

The Data Store Interface (DSI)

The data store interface, or DSI, defines a generic view of an SQL database that is
independent of the data access standards (ODBC, JDBC, ADO.NET and OLE DB).
The Simba SDK translates the ODBC, JDBC, ADO.NET and OLE DB interfaces to the
DSI in C++, Java, or C#. By writing code to map from the DSI to your data store, you
are creating a connector that can use one of these standard interfaces.

Note:

l The DSI API is object-oriented and simpler to use than the industry-
standard interfaces, making it easier to translate standard APIs to your
custom data store.

l The DSI API provides a consistent API for all the standards it supports:
ODBC, JDBC, ADO.NET or OLE DB. This makes creating connectors for
different standards much easier, because you can re-use your
knowledge.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
10

Introducing the Simba SDK

http://www.magnitude.com/

Your DSI Implementation (DSII)

The SimbaODBC component uses the data store interface, or DSI, to communicate
with the your DSI implementation. The DSI interface is common to all Simba SDK
components that communicate with customer code. You write your DSI
implementation (DSII) to connect directly to your data store and translate its interface
to the DSI API.

Note:

Every DSII is custom designed for a specific data store and that data store's
interface.

Example - Build a Client/Server Solution

Once you have created a DSI implementation and built a custom connector, either for
a SQL-enabled or non-SQL-enabled data store, you can rebuild your DSI
implementation into a client/server solution. You can do this without making any
changes to the code - simply link your DSI implementation to the Simba Server to
provide remote data access:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
11

Introducing the Simba SDK

http://www.magnitude.com/

The following sections describe the components shown in the above diagram.

Simba Client/Server protocol

The Simba Client/Server protocol is a network protocol that works on any network to
provide remote access to a DSI implementation. Simba Server translates the Simba
Client/Server protocol to the DSI API.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
12

Introducing the Simba SDK

http://www.magnitude.com/

Note:

l A client/server deployment lets you locate your custom connector close
to the data store, while the client applications are located with your users.

l Both the ODBC and the JDBC client can talk to the same SimbaServer.
That means you can write one custom connector, built it as a server, then
use it to service SQL requests from both ODBC and JDBC applications.

SimbaClient for ODBC and Simba Client for JDBC

The ODBC and JDBC clients are shared objects provided by Simba. These clients use
the Simba Client/Server protocol to handle communication between the application
and Simba Server.

Related Topics

Simba SDK Usage Scenarios

Build a Connector in 5 Days

Simba SDK FAQ

Implementation Options

You can use the Simba SDK to build custom connectors for ODBC, JDBC, OLE DB,
and ADO.Net applications. Depending on the interface standard that your connector
supports, you can develop the connector in C++, Java, or C#.

The Simba SDK provides many different implementation options for developing your
custom connector. For example, you can develop an ODBC connector in C++ using
the DSI API. You can also develop an ODBC connector in Java using the Java DSI
API and the JNI bridge. Or, you can develop a custom JDBC connector for data stores
that do not support SQL, and implement the connector for either a local or a client-
server deployment.

Note:

This guide explains how to build a connector for data stores that support SQL.
If you want to build a connector for data stores that do not support SQL, see
Developing Connectors for Data Stores Without SQL.

You may find the HTML version of this guide easier to use. See Developing
Connectors for SQL-capable Data Stores.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
13

Introducing the Simba SDK

http://www.simba.com/drivers/simba-engine-sdk/#usage
http://www.simba.com/drivers/simba-engine-sdk/#documentation
http://www.simba.com/resources/sdk/faq/
http://cdn.simba.com/products/SEN/doc/development_guides/nosql
http://cdn.simba.com/products/SEN/doc/development_guides/sql
http://cdn.simba.com/products/SEN/doc/development_guides/sql
http://www.magnitude.com/

The following table shows the possible types of custom connectors you can build with
the Simba SDK, and the components and APIs required for each. The table includes
options for local and remote (client/server) deployments, and for SQL-enabled and
non-SQL-enabled data stores. The Sample Connector(s) column lists the sample
connector(s) that provide a working example of your chosen implementation option.

Note:

l Every connector, except for those written in C#, is supported on
Windows, Unix/Linux, and macOS. C# is supported on Windows.

l The sample connectors are included with the Simba SDK in the
folderC:\Simba
Technologies\SimbaEngineSDK\10.0\Examples\Source.

Connector
Type Language Data Store

Type
Sample Con-
nector(s)

Simba SDK
Component
(s)

Custom
ODBC
connector

C++ SQL, Local Ultralight DSI API

Custom
ODBC
connector

C++ SQL,
Remote

Ultralight +
SimbaServer DSI API

Custom
ODBC
connector

Java SQL, Local JavaUltraLight Java DSI API
+ JNI DSI

Custom
ODBC
connector

Java SQL,
Remote

JavaUltraLight +
SimbaServer

Java DSI API
+ JNI DSI

Custom
ODBC
connector

C# SQL, Local DotNetUltraLight .NET DSI API
+ CLI DSI

Custom
ODBC drive C# SQL,

Remote
DotNetUltraLight +
SimbaServer

.NET DSI API
+ CLI DSI

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
14

Introducing the Simba SDK

http://www.magnitude.com/

Connector
Type Language Data Store

Type
Sample Con-
nector(s)

Simba SDK
Component
(s)

Custom
JDBC
connector

Java SQL, Local JavaUltraLight Java DSI API

Custom
JDBC
connector

Java SQL,
Remote

JavaUltraLight +
SimbaServer

Java DSI API
+ JNI DSI

Custom
JDBC
connector

Java
Not SQL
capable,
Local

JavaQuickJson Java DSI API

Custom
ADO.NET
connector

C# SQL, Local DotNetUltraLight .NET DSI API

The following section provides more details about the information in the table above.

Options for Programming Languages

The programming language you use to write the DSII depends partly on the interface
standard you need to support. The supported combinations of programming language
and interface standard are shown in the table above.

Example:

l To write a JDBC connector that is deployed locally, you must write the DSII in
Java.

l To write an ODBC connector that is deployed locally, you can write the DSII in
C++, Java, or C#. If you write the DSI in Java, you need to link with a JNI bridge.
If you write the DSI in C#, you need to link with a CLI bridge.

Programming Languages for ODBC applications

To build a local connector for ODBC applications, you can write your DSII in the
following languages:

l C++ (the most common choice)
l C# with a CLI bridge
l Java with a JNI bridge

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
15

Introducing the Simba SDK

http://www.magnitude.com/

Programming Language for JDBC Applications

To build a local connector for JDBC applications, you must write your DSII in Java. Or,
you can deploy the JDBC client to support the JDBC applications and implement the
SimbaServer in Java, C++, or C#.

Programming Language for ADO.NET Applications

To build a local connector for ADO.NET applications, you must write your DSII in C#.

Supported Combination of Components

This section explains the different ways you can leverage the Simba SDK components
in each of the supported programming languages.

C++ Development

For C++ connector development, you have the following options:

l Use the DSI API, build as an ODBC connector (connected locally to your data
store) and link your DSII to SimbaODBC.

l Build as a SimbaServer connector, supporting remote connections from
SimbaClients for JDBC and ODBC. Link your C++ DSII upwards to SimbaServer
via the DSI API.

In the above cases, you can link against the C++ SQLEngine to access non-relational
data stores.

Java Development

For Java connector development, you have the following options:

l Use the Java DSI API, build as a JDBC connector (connected locally to your data
store) and link your DSII with SimbaJDBC.

l Build as an ODBC connector (connected locally to your data store) using the
Java DSI API and link via the C++ to Java Bridge to SimbaODBC.

l Build as a SimbaServer connector, supporting remote connections from the
JDBC and ODBC clients. Link your Java DSII upward via the Java DSI API and
C++ to Java Bridge to SimbaServer.

In the above cases, you can link to the Java SQLEngine to access non-relational data
stores.

C# Development

For C# development, you have the following options:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
16

Introducing the Simba SDK

http://www.magnitude.com/

l Use the DotNet DSI API, build as an ADO.NET connector (connected locally to
your data store) and link your DSII with Simba.NET.

l Use the DotNet DSI API, build as an ODBC connector (connected locally to your
data store) and link via the C++ to C# Bridge to SimbaODBC.

l Build as a SimbaServer connector, supporting remote connections from the
JDBC and ODBC clients. Link your DotNet DSII upward via the DotNet DSI API
and C++ to C# Bridge to SimbaServer.

Options for Deployment

The Simba SDK provides you a number of different optional components for building
and deploying a custom connector for a wide variety of solutions.

Local Deployments

Local deployments are typically used in the following scenarios:

l Client applications access a database that runs on each user’s machine.
For example, an ODBC connector might support a client management database
where each user performs analysis of their own, local data.

l You have already configured your database for network access and some
component of your software is already installed on user machines. Your new
connector will allow other, general-purpose client applications to access the
same connection to your database that your own client application uses.

l You are in the early stages of testing your connector and as a developer, you are
accessing a local instance of your database. You will eventually change the
compilation options to link to the SimbaServer libraries, but there will be no
changes needed to your DSI implementation to do this.

Remote (Client/Server) Deployments

Client-Server deployments are best when software runs on a server and users access
it from their own machines. Your custom connector, using SimbaServer, runs on the
network server. SimbaClient is installed on user machines to allow applications such
as Excel and Tableau to access your remote data store.

Related Topics

Introducing the Simba SDK

Simba SDK FAQ

Library Components

This section introduces the components comprising the Simba SDK.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
17

Introducing the Simba SDK

http://www.simba.com/resources/sdk/faq/
http://www.magnitude.com/

Note:

This guide explains how to build a connector for data stores that support SQL.
If you want to build a connector for data stores that do not support SQL, see
Developing Connectors for Data Stores Without SQL.

You may find the HTML version of this guide easier to use. See Developing
Connectors for SQL-capable Data Stores.

SimbaODBC (the "C++ SDK")

SimbaODBC provides a complete ODBC 3.80 interface and all of the processing
required to meet the ODBC 3.80 specification. It is the connection between your
custom DSI implementation and ODBC applications such as Tableau and Microsoft
Excel.

Your custom ODBC connector is composed of the SimbaODBC component and your
DSI implementation. The SimbaODBC component implements most of the connector
functionality, including:

l session and statement management
l abstracting and implementing the low-level requirements of the ODBC API
l error checking

Tip:

When changes are made to the ODBC API or the way the standard is used by
applications, Simba incorporates these changes in a manner that is
transparent to your DSI implementation.

For information about the Simba SDK C++ API method calls, see the Simba SDK C++
API Reference at https://www.simba.com/docs/SDK/SimbaEngine_C++_API_
Reference.

Simba OLE DB

This component is part of the C++ SDK. SimbaOLEDB provides interfaces and all the
processing required to meet the OLE DB specification. It is the connection between
your custom DSI implementation and common OLE DB reporting applications such as
Microsoft SQL Server Analysis Services.

SimbaJDBC (the "Java SDK")

SimbaJDBC provides complete interfaces for JDBC 4.0, JDBC 4.1, and JDBC 4.2, as
well as all of the processing required to meet these specifications. It is the connection

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
18

Introducing the Simba SDK

http://cdn.simba.com/products/SEN/doc/development_guides/nosql
http://cdn.simba.com/products/SEN/doc/development_guides/sql
http://cdn.simba.com/products/SEN/doc/development_guides/sql
https://www.simba.com/docs/SDK/SimbaEngine_C++_API_Reference
https://www.simba.com/docs/SDK/SimbaEngine_C++_API_Reference
http://www.magnitude.com/

between your custom DSI implementation and common JDBC reporting applications.

For information about the Simba SDK Java API method calls, see the SimbaSDK Java
API Reference at https://www.simba.com/docs/SDK/SimbaEngine_Java_API_
Reference.

Simba.NET

Simba.NET provides a complete ADO.NET interface and all the processing required to
meet the ADO.NET specification. It is the connection between your custom DSI
implementation and common ADO.NET reporting applications such as Microsoft SQL
Server Analysis Services.

The Data Store Interface (DSI)

The data store interface, or DSI, defines a generic view of an SQL database that is
independent of the industry standards for data access, such as ODBC, JDBC,
ADO.NET and OLE DB. The Simba SDK translates the ODBC, JDBC, ADO.NET and
OLE DB interfaces to the DSI in C++, Java, or C#. By writing code to map from the DSI
to your data store, you are creating a connector that can use one of these standard
interfaces.

The DSI API is object-oriented and simpler to use than the industry standard
interfaces. This makes it easier to write a DSI implementation that will translate to your
custom data store. Also, because the DSI API provides a consistent API whether you
are implementing ODBC, JDBC, ADO.NET or OLE DB, it is easier to re-use your
knowledge when creating a connector for a different industry standard.

The Data Store Interface (DSI)

The data store interface, or DSI, defines a generic view of an SQL database that is
independent of the industry standards for data access, such as ODBC, JDBC,
ADO.NET and OLE DB. The Simba SDK translates the ODBC, JDBC, ADO.NET and
OLE DB interfaces to the DSI in C++, Java, or C#. By writing code to map from the DSI
to your data store, you are creating a connector that can use one of these standard
interfaces.

Simba Client/Server

Simba Client/Server allows remote access to your data store. You link the
SimbaServer component with your DSII to create a custom connector than can accept
requests from SimbaClient. You deploy SimbaClient with the application to send
requests to the remote connector.

SimbaServer is most frequently used as a stand-alone executable, although it can be
set up as a DLL or shared object under another server.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
19

Introducing the Simba SDK

https://www.simba.com/docs/SDK/SimbaEngine_Java_API_Reference
https://www.simba.com/docs/SDK/SimbaEngine_Java_API_Reference
http://www.magnitude.com/

The DSI implementation used with SimbaServer can choose to include the Simba
SQLEngine. It can be written to perform a wide range of functionality including SQL
query processing with Simba SQLEngine, concentrating client requests through one
executable, aggregating data stores, or controlling data access through role-based
permissions. There are many possibilities for using SimbaServer as an intermediate
processing step in a larger system.

The SimbaServer can be written in C++, or written in Java including the JNI Server.
For more information see the SimbaClient/Server Developer Guide.

SimbaClient for ODBC

SimbaClient for ODBC is an ODBC connector DLL or shared object that can connect
to SimbaServer. It includes SimbaODBC and a DSI implementation that
communicates via the Simba Client/Server protocol to SimbaServer. Since any
SQLEngine in the stack will be on the server side, there is no need for Simba
SQLEngine in this connector. This is a completely generic ODBC connector that, when
queried, reports the capabilities of the database that is connected to SimbaServer.

Note:

SimbaClient for ODBC is provided by Simba, and is ready to deploy with no
additional development effort required.

SimbaClient for JDBC

SimbaClient for JDBC is a JDBC connector packaged as a .jar file so you can install it
in an end user’s client-side Java Run Time Environment. SimbaClient for JDBC
includes the equivalent of SimbaODBC and custom Java code that communicates via
the Simba Client/Server protocol with SimbaServer.

Note:

SimbaClient for JDBC is provided by Simba, and is ready to deploy with no
additional development effort required.

C++ to Java Bridge (JNI DSI)

This component of the Simba SDK allows you to write the DSII in Java, then link to
SimbaODBC or SimbaServer (including Simba SQLEngine) to create an ODBC
connector.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
20

Introducing the Simba SDK

http://www.magnitude.com/

C++ to C# Bridge (CLI DSI)

This component of the Simba SDK allows you to write the DSII in C#, then link to
SimbaODBC or SimbaServer (including Simba SQLEngine) to create an ODBC
connector.

Sample Connectors

The Simba SDK includes a number of sample connectors and sample connector
projects to help you get started quickly with your custom ODBC or JDBC connector.
For more information on sample connectors, see Sample Connectors and Projects.

Related Topics

Simba SDK C++ API Reference

Simba SDK Java API Reference

Simba SDK FAQ

Sample Connectors and Projects

The Simba SDK includes a number of sample connectors and sample connector
projects to help you get started quickly with your custom ODBC or JDBC connector.
The compiled C++ sample connectors are in the Examples\Builds\Bin folder of
your Simba SDK installation directory, the compiled Java sample connectors are in
Examples\Builds\Lib, and the sample connector projects are in
Examples\Source.

Note:

This guide explains how to build a connector for data stores that support SQL.
If you want to build a connector for data stores that do not support SQL, see
Developing Connectors for Data Stores Without SQL.

You may find the HTML version of this guide easier to use. See Developing
Connectors for SQL-capable Data Stores.

Getting Started with the Sample Connector Projects

The sample connector projects are a great way to get started developing your custom
connector. Each sample connector is accompanied by a 5-Day Guide, which walks
you through the steps of building, configuring, and customizing the project.

For information on how to use the sample connector projects, see 5 Day Guides at
http://www.simba.com/resources/sdk/documentation/.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
21

Introducing the Simba SDK

https://www.simba.com/docs/SDK/SimbaEngine_C++_API_Reference
https://www.simba.com/docs/SDK/SimbaEngine_Java_API_Reference
http://www.simba.com/resources/sdk/faq/
http://cdn.simba.com/products/SEN/doc/development_guides/nosql
http://cdn.simba.com/products/SEN/doc/development_guides/sql
http://cdn.simba.com/products/SEN/doc/development_guides/sql
http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

The following sections describe each of the sample connector projects and sample
connectors.

Note:

Although this guide explains how to build a connector that does not use the
SQL Engine, information on using the SQL Engine is included in this section for
reference.

Quickstart Sample Connector

C++ Not SQL-Capable ODBC

Quickstart is a C++ sample DSI implementation of an ODBC connector that reads text
files in tabbed Unicode text format. This is not a SQL aware data source, so the Simba
SQLEngine component is employed to perform the necessary SQL processing. This
sample’s purpose is to provide a simple, working connector that you can copy and
transform into a connector that accesses your non-SQL data store. An ODBC
configuration DLL is included.

The 5-Day Guide for the Quickstart sample connector project is located at 5 Day
Guides at http://www.simba.com/resources/sdk/documentation/ under the section
"Build a C++ ODBC Connector in 5 Days". Select one of the guides for a non-SQL-
based data source.

DotNetQuickstart Sample Connector

C# Not SQL-Capable ODBC

DotNetQuickstart is a C# sample DSI implementation that is the same as the
Quickstart sample above, except that it is written in C# using Simba’s C++ to C# bridge
API (also referred to as the CLIDSI API). See the document, “Build a C# ODBC
Connector in 5 Days” for a step-by-step walk-through of the process of creating a
custom ODBC connector using C#.

JavaQuickstart Sample Connector

Java Not SQL-CapableODBC

JavaQuickstart is a Java sample DSI implementation that is the same as the
Quickstart sample, except that it is written in Java using Simba’s C++ to Java bridge
API (also referred to as the JNIDSI API). See the document “Build a Java ODBC
Connector in 5 Days” for a step-by-step walk-through of the process of creating a
custom ODBC connector using Java.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
22

Introducing the Simba SDK

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

Ultralight Sample Connector

C++ SQL-CapableODBC

Ultralight is a sample connector that illustrates how to build a DSII for a database that
already supports SQL and therefore does not require the SQLEngine component.

The Ultralight example does not truly support SQL; rather, it simply looks for keywords
in the query and returns a hardcoded result set. Nevertheless, this is sufficient to show
all the necessary building blocks and provide a placeholder where your real SQL
processing and result set generation could take place.

The 5-Day Guide for the Ultralight sample connector project is located at 5 Day Guides
at http://www.simba.com/resources/sdk/documentation/ under the section "Build a
C++ ODBC Connector in 5 Days". Select one of the guides for a SQL-based data
source.

DotNetUltralight Sample Connector

C# SQL-CapableODBC

DotNetUltralight is a C# sample DSI implementation that is the same as the Ultralight
sample above, except that it is written in C#. DotNetUltralight can be built using either
Simba.ADO.NET or using Simba’s C++ to C# bridge API (also referred to as the
CLIDSI API). When using Simba.ADO.NET, the resulting connector will be written
entirely in C#, providing an ADO.NET interface. When using Simba’s C++ to C# bridge
API, the resulting connector will be a mixture of C# and C++, providing an ODBC
interface or SimbaServer executable for use with any of the SimbaClient connectors.

JavaUltralight Sample Connector

Java SQL-Capable JDBC ODBC

JavaUltralight is a Java sample DSI implementation that is the same as the Ultralight
sample above, except that it is written in Java. JavaUltralight can be built using either
SimbaJDBC or using Simba’s C++ to Java bridge API (also referred to as the JNIDSI
API). When using SimbaJDBC, the resulting connector will be written entirely in Java,
providing a JDBC 4.0, 4.1, or 4.2 interface. When using Simba’s C++ to Java bridge
API, the resulting connector will be a mixture of Java and C++, providing an ODBC
interface or SimbaServer executable for use with any of the SimbaClient connectors.

The 5-Day Guide for the JavaUltralight sample connector project is located at 5 Day
Guides at http://www.simba.com/resources/sdk/documentation/ under the section
"Build a JDBC Connector in 5 Days". Select the guide for a SQL-based data source.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
23

Introducing the Simba SDK

http://www.simba.com/resources/sdk/documentation/
http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

JavaQuickJson Sample Connector

Java Not SQL-Capable JDBC ODBC

JavaQuickJson is a sample Java DSI imlplementation written purely in Java to
demonstrate usage of the Java Simba SQLEngine. The connector accesses a data
store comprised of JSON files and uses a third party JSON API to read and write data
to those files. By including the Java Simba SQLEngine, the connector demonstrates
how to implement some of the classes specific to the Java Simba SQLEngine and how
the Java Simba SQLEngine can be used to access a data store that is not organized
using traditional tables and columns.

The 5-Day Guide for the JavaQuickJson sample connector project is located at 5 Day
Guides at http://www.simba.com/resources/sdk/documentation/ under the section
"Build a JDBC Connector in 5 Days". Select the guide for a non-SQL-based data
source.

Using the Sample Connectors for Debugging

You can use the sample connectors to analyze and debug suspected problems in your
custom connector. For example, if you think your DSI implementation is working
correctly but there is a problem in your Simba SDK system, there is a simple way to
determine where the problem lies. If the problem shows up when you run the system
you have assembled with the sample connector project implementation, then the
problem is likely to be in Simba SDK components.

If the problem goes away when you replace your DSI implementation with the sample
connector project, then you need to do some more investigation of your
implementation. In either case, analysis and debugging is focused and reduced,
lowering your cost to deliver a solution to your customers

Related Topics

Building Blocks for a DSI Implementation

The diagrams in this section illustrate the how the Simba SDK components work
together in both the standalone and the client/server deployment.

Note:

Although this guide explains how to build a connector that does not use the
SQL Engine, information on using the SQL Engine is included in this section for
reference.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
24

Introducing the Simba SDK

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

Standalone Deployment

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
25

Introducing the Simba SDK

http://www.magnitude.com/

Client/Server Deployment

Each of these diagrams has three zones horizontally and vertically. The horizontal
zones are:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
26

Introducing the Simba SDK

http://www.magnitude.com/

Zone Description

Application
Platform

These elements, shown in gray boxes, represent the client-
side applications that will connect to the completed ODBC,
JDBC connector, or ADO.NET provider that you build with the
SDK.

Simba SDK These elements, shown in white boxes, are the components
that make up the SDK itself.

Customer
Implementation

These elements, shown in green boxes, represent the unique
code you write to access your data store.

The vertical zones align with the different development environments available to you:

Zone Description

C++

A C++ DSII may be written to support ODBC applications by linking
upward from your implementation to the SimbaODBC component.
Alternately, you can also support JDBC or ADO.NET applications by
linking upward to the SimbaServer component.

Java

A Java DSII may be written to support JDBC applications by linking to
the SimbaJDBC component. Alternately, you can support ODBC
applications by linking upward through the C++ to Java Bridge to the
SimbaODBC component, or support ODBC or ADO.NET applications by
linking your Java DSII upward via the same bridge to the SimbaServer
component.

C#

A C# DSII may be written to support ADO.NET applications by linking to
the Simba.NET component. Alternately, you can support ODBC
applications by linking upward via the C++ to C# Bridge to the
SimbaODBC component, or support ODBC or JDBC applications by
linking your C# DSII upward via the same bridge to the SimbaServer
component.

Related Topics

Simba SDK FAQ

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
27

Introducing the Simba SDK

http://www.simba.com/resources/sdk/faq/
http://www.magnitude.com/

Getting Started

To get started building a custom ODBC, JDBC, OLE DB, or ADO.net connector using
the Simba SDK, follow these general steps:

1. Plan how to map your data store schema to the DSI model.
2. Use one of the 5-Day Guides to set up your development environment. For more

information on the 5-Day Guides, see http://www.simba.com/drivers/simba-
engine-sdk/#documentation.

3. Implement your plan for translating your data store to the DSI.

Mapping Your Data Store Schema to the DSI Model

The first step is to map your data store to the DSI model. The DSI represents the data
store as a series of tables and columns, and the purpose of your DSI implementation is
to translate your real data store schema into the DSI representation.

Note:

The DSI represents the data store as a series of tables and columns. The
purpose of your DSI implementation is to translate your data store schema into
tables and columns that the DSI can understand.

The diagram below shows an example of one type of mapping. The database on the
left uses an object-oriented or networked schema to store the data. However, a
relational SQL execution engine cannot directly use this schema.

If you represent the same database as tables and columns, even though you do not
actually transform the database into this new form, it fits the relational paradigm. Now
you can write a DSI implementation to create this view of the data and Simba SDK can
use the SQL Engine to execute SQL queries against it. In this way, any database you
can represent as tables and columns can be accessed by Simba SDK and made
accessible to applications and reporting tools.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
28

Introducing the Simba SDK

http://www.simba.com/drivers/simba-engine-sdk/#documentation
http://www.simba.com/drivers/simba-engine-sdk/#documentation
http://www.simba.com/drivers/simba-engine-sdk/#documentation
http://www.magnitude.com/

Relational applications, or applications that can access relational databases, cannot
access the networked data store on the left, because it is not a relational database.
Once you translate the data store to use tables and columns, as shown in the data
store on the right, relational applications can use the SQL Engine to send SQL queries
to it. Simba SQLEngine works with tabular database schema (but not non-tabular
database schema).

Using Virtual Tables

It might be tempting to create a tabular view of your data store by reading the entire
database into temporary tables, and accessing these tables through the DSI.
However, this is inefficient and only works for very small databases. A more efficient
method is to create virtual tables and then access the original database when the
Simba SDK requests data through the DSI.

Related Topics

Build a Connector in 5 Days

Simba SDK FAQ

Frequently Asked Questions

This section answers the questions that are commonly asked by people who are new
to the Simba SDK product and technology. For a more detailed FAQ, see the Testing
and Troubleshooting section of this guide.

What Platforms does the Simba SDK Support?

For information about the supported versions of Windows, Unix, Linux, and macOS,
plus a list of supported compilers, see Supported Platforms.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
29

Introducing the Simba SDK

http://www.simba.com/drivers/simba-engine-sdk/#documentation
http://www.simba.com/resources/sdk/faq/
http://www.magnitude.com/

What is ODBC?

ODBC stands for Open Database Connectivity (ODBC). It is a C-language open
standard Application Programming Interface (API) for accessing relational databases.

In 1992, Microsoft contracted Simba to build the world's first ODBC connector;
SIMBA.DLL, and standards-based data access was born. Using ODBC, you can
access data stored in many common databases. A separate ODBC connector is
needed for each database to be accessed. An ODBC Driver Manager is also needed.
This is supplied with the Windows operating system, and is available commercially
and as open source on Unix and Linux.

What is MDAC?

MDAC, or Microsoft Data Access Components, are runtime components that are
shipped with the Windows operating system. These components contain interfaces for
ODBC, OLEDB and ADO, as well as the ODBC connectors for Microsoft’s database-
related products.

The MDAC SDK is available from the Microsoft Developer Network (MSDN) and can
be downloaded from:
http://www.microsoft.com/downloads/en/details.aspx?familyid=5067FAF8-0DB4-
429A-B502-DE4329C8C850&displaylang=en.

In newer versions of Windows (Vista & 7), MDAC is now called Windows DAC. For
more information, see http://msdn.microsoft.com/en-
us/library/ms692877%28v=vs.85%29.aspx.

What Third-Party Components Does the Simba SDK Use?

For information on the third-party components used by the Simba SDK, see Third
Party Licenses.

I am new to ODBC. How does my application work with an ODBC Connector?

ODBC-enabled applications always access ODBC connectors through the Driver
Manager that is installed on the operating system. An instance of the Driver Manager
is created for each ODBC application. The application will specify to the Driver
Manager which ODBC connector to use when establishing a connection. The Driver
Manager will then load the appropriate ODBC connector. Once the ODBC connector is
loaded, the Driver Manager will map all incoming requests to the appropriate functions
exported by the ODBC connector.

To interact with a Driver Manager, ODBC-enabled applications will request the
following three ODBC handles:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
30

Introducing the Simba SDK

http://www.microsoft.com/downloads/en/details.aspx?familyid=5067FAF8-0DB4-429A-B502-DE4329C8C850&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?familyid=5067FAF8-0DB4-429A-B502-DE4329C8C850&displaylang=en
http://msdn.microsoft.com/en-us/library/ms692877(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms692877(v=vs.85).aspx
http://www.magnitude.com/

SQL_HANDLE_ENV

Represents an environment handle. Every instance of an ODBC connector will be
associated with a single environment handle.

SQL_HANDLE_DBC

Represents a connection handle. Connections are created using one of the following
three ODBCmethods: SQLConnect(), SQLBrowseConnect(), SQLDriverConnect().
Every connection handle is associated with its parent environment handle.

SQL_HANDLE_STMT

Represents a statement handle. Every statement that is to be executed via ODBC will
be associated with its own statement handle. Every statement handle is associated
with its parent connection handle.

The Driver Manager interacts with an ODBC connector in much the same way. The
Driver Manager will request the handles for the environment, connection and
statement. All calls made from the ODBC-enabled application to the Driver Manager
require the Driver Manager allocated handle and will be implemented as follows:

1. Map incoming Driver Manager allocated handle to an instance representing the
handle.

2. Call the ODBC connector associated with the instance using the ODBC
connector associated handle.

What is ICU?

ICU stands for the International Components for Unicode (ICU) libraries. These
libraries provide Unicode handling mechanisms on which the SimbaODBC
components are dependent. These libraries are distributed under an open source
license at:

http://source.icu-project.org/repos/icu/icu/trunk/license.html

ICU is freely available from:

http://www.icu-project.org/download

What is SimbaODBC?

SimbaODBC is a component part of Simba SDK for developing full-featured,
optimized ODBC 3.80 connectors on top of any SQL-enabled data source.
SimbaODBC provides extensibility for JDBC, OLE DB as well as ADO.NET
connectivity. SimbaODBC simplifies exposing the query parsing, query execution and
data retrieval facilities of your SQL-enabled data source.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
31

Introducing the Simba SDK

http://source.icu-project.org/repos/icu/icu/trunk/license.html
http://www.icu-project.org/download
http://www.magnitude.com/

What do the Different Components of SimbaODBC do?

SimbaODBC ships with a number of static libraries. You will link these libraries into the
code you write to communicate with an underlying SQL-92 enabled data store.

What SQL Conformance Level Does Simba SDK support?

ODBC specifies three levels of SQL grammar conformance: Minimum, Core and
Extended. Each higher level provides more fully-implemented data definition and data
manipulation language support. Simba SDK fully supports Core DML SQL grammar,
as well as many Extended grammars.

Related Topics

5 Day Guides at http://www.simba.com/resources/sdk/documentation/

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
32

Introducing the Simba SDK

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

Core Features

This section explains the features that most custom connectors will implement.

Fetching Metadata for Catalog Functions

ODBC applications need to understand the structure of a data store in order to execute
SQL queries against it. This information is provided using catalog functions. For
example, an application might request a result set containing information about all the
tables in the data store, or all the columns in a particular table. Each catalog function
returns data as a result set.

Your custom ODBC connector uses metadata sources, provided by the Simba SDK, to
handle SQL catalog functions. Of the 13 DSIMetadataSource sub-classes, there is
only one that you need to modify to make a basic connector work. This section
describes the other metadata classes and under what circumstances you need to
update them.

Implementation

Your CustomerDSIIDataEngine class has to derive from IDataEngine or
DSIDataEngine. If it is derived from IDataEngine, then the following function has
to be implemented:

Simba::DSI::IResult* MakeNewMetadataResult(

Simba::DSI::DSIMetadataTableID in_metadataTableID,

const std::vector<Variant>& in_filterValues,

const simba_wstring& in_escapeChar,

const simba_wstring& in_identifierQuoteChar,

bool in_filterAsIdentifier);

This function creates a new IResult* which contains a metadata data source and
filters out rows in the metadata table that are not needed. If the connector does not
support a metadata table, then the metadata source in the IResult* should be an
empty metadata data source with no rows.

The function takes the following parameters:

l in_metadataTableID: Identifier to create the appropriate metadata table. For a
list of the possible identifiers, refer to the table below. For complete details on
each identifier, refer to DSIMetadataTableID.h in the API guide.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
33

Core Features

http://www.magnitude.com/

l in_filterValues: Filters to be applied to the metadata table. These filters are
passed in by the application that calls the catalog function and cannot be
modified. For example, the catalog function SQLTables contains the arguments
CatalogName, SchemaName, TableName, and TableType. These arguments
are extracted to the in_filterValues vector.
While these values cannot be modified, if the CatalogName is NULL, the current
catalog name is used.

l in_escapeChar: Escape character used in filtering.
l in_identifierQuoteChar: Quote identifier, which is the quotation mark that this
filter recognizes.

l in_filterAsIdentifier: Indicates if string filters are treated as identifiers. This can be
set through the connection attribute SQL_ATTR_METADATA_ID.

If it is derived fromDSIDataEngine, then the following function has to be
implemented:

Simba::DSI::DSIMetadataSource* MakeNewMetadataTable(

Simba::DSI::DSIMetadataTableID in_metadataTableID,

Simba::DSI::DSIMetadataRestrictions& in_restrictions,

const std::vector<Simba::Support::Variant>& in_filterValues,

const simba_wstring& in_escapeChar,

const simba_wstring& in_identifierQuoteChar,

bool in_filterAsIdentifier);

This function creates a new Metadatasource* which contains raw metadata. If the
connector does not support a metadata table, then it should return an empty metadata
source with no rows by returning a DSIEmptyMetadataSource object.

The function takes the following parameters:

l in_metadataTableID: Identifier to create the appropriate metadata table. For
a list of the possible identifiers refer to the table below. For complete details on
each identifier refer to DSIMetadataTableID.h in the API guide.

l in_restrictions: Restrictions that may be applied to the metadata table.
Map of DSIOutputMetadataColumnTag that identify columns in the result set, to
the restriction that apply to those columns. For example, if the
DSIOutputMetadataColumnTag identifies a catalog name, then the restriction
specifies that the result set should only contain rows with the same catalog name

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
34

Core Features

http://www.magnitude.com/

as the restriction. For a complete list and details of
DSIOutputMetadataColumnTag values, refer to
DSIMetadataColumnIdentifierDefns.h in the API guide.

l in_filterValues: Filters to be applied to the metadata table. These filters are
passed in by the application that calls the catalog function and cannot be
modified. For example, the catalog function SQLTables contains the arguments
CatalogName, SchemaName, TableName, and TableType. These arguments
are extracted to the in_filterValues vector.
While these values cannot be modified, if the CatalogName is NULL, the current
catalog name is used.

l in_escapeChar: Escape character used in filtering.
l in_identifierQuoteChar: Quote identifier, which is the quotation mark that
this filter recognizes.

l in_filterAsIdentifier: Indicates if string filters are treated as identifiers.
This can be set through the connection attribute SQL_ATTR_METADATA_ID.

If the metadata table is supported by the connector, then a new class should be
implemented by deriving fromSimba::DSI::DSIMetadataSource and
implementing all the functions.

Note:

The Ultralight connector is a sample connector derives ULDataEngine from
DSIDataEngine. It implements classes for metadata tables for DSI_
TABLES_METADATA, DSI_CATALOGONLY_METADATA, DSI_
SCHEMAONLY_METADATA, DSI_TABLETYPEONLY_METADATA, DSI_
COLUMNS_METADATA, and DSI_TYPE_INFO_METADATA metadata table
identifiers.

Adding Custom Metadata Columns

Each catalog function returns data as a result set. In addition to the ODBC-standard
columns that are returned when a catalog function is executed, the data store can
return additional columns. Your custom connector can add custom metadata columns
to the Metadata result tables in order to support data source-specific data. The
DSIMetadataSource-derived classes support custom columns, which are enabled
by proper implementations of several functions. These functions are:

l GetCustomColumns

l GetCustomMetadata

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
35

Core Features

http://www.magnitude.com/

Note:

l All custom metadata columns must be of type
DSICustomMetadataColumn. The header file for
DSICustomerMetadataColumn can be found at [INSTALL_
DIRECTORY]\DataAccessComponents\Include\DSI\Client\DS
ICustomMetadataColumn.h

l This feature is only supported in the C++ SDK.

A sample implementation of a custom metadata column for
CustomerDSIITablesMetadataSource is shown below. Adding custom metadata
columns to any other metadata source follows a similar formula.

To Add Custom Metadata Columns:

1. Define a custom column tag for the custom column:

const simba_uint16 CUSTOM_TABLES_COLUMN_TAG = 50;

2. Define a member variable for the custom column:

std::vector<Simba::DataSToreInterface::DataEngine::Clien
t::
DSICustomMetadataColumn*> m_customMetadataColumns;

3. Initialize the metadata for the custom columns in the
CustomerDSIITablesMetadataSource constructor. Use the static
MakeNewSqlTypeMetadata function of the
Simba::Support::TypedDataWrapper::SqlTypeMetadataFactory
class.

using namespace Simba::DSI;
using namespace Simba::Support;
DSICustomMetadataColumn* column = NULL;
DSIColumnMetadata* colMetadata = NULL;
SqlTypeMetadata* metadata = NULL;
// Custom column
colMetadata = new DSIColumnMetadata();
colMetadata->m_autoUnique = false;
colMetadata->m_caseSensitive = false;
colMetadata->m_label = L"CUSTOM_COL";
colMetadata->m_name = L"CUSTOM_COL";
colMetadata->m_unnamed = false;
colMetadata->m_charOrBinarySize = 128;

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
36

Core Features

http://www.magnitude.com/

colMetadata->m_nullable = DSI_NULLABLE;
colMetadata->m_searchable = DSI_PRED_NONE;
colMetadata->m_updatable = DSI_READ_ONLY;
// Create SqlTypeMetadata*
metadata = SqlTypeMetadataFactorySingleton::GetInstance
()>CreateNewSqlTypeMetadata(SQL_VARCHAR);
column = new DSICustomMetadataColumn(
metadata,
colMetadata,
CUSTOM_TABLES_COLUMN_TAG);
m_customColumnMetadata.push_back(column);

4. For information on DSIColumnMetadata, refer to Simba SDK Java API
Reference or Simba SDK C++ API Reference.

5. Implement CustomerDSIITablesMetadataSource::GetCustomColumns:

void CustomerDSIMetadataSource::GetCustomColumns
(std::vector<Simba::DSI::DSICustomMetadataColumn*>& out_
customColumns)

6. Iterate over m_customColumns and push them into out_customColumns.

7. Implement
CustomerDSIITablesMetadataSource::GetCustomMetadata:

bool CustomerDSIITablesMetadataSource:::GetCustomMetadata
(
simba_uint16 in_columnTag,
SqlData* in_data,
simba_signed_native in_offset,
simba_signed_native in_maxSize)

The implementation is the same as
CustomerDSIITablesMetadataSource::GetMetadata except the column
tags you check are your custom column tags.For example:

switch (in_columnTag){

case CUSTOM_TABLES_COLUMN_TAG:{
//retrieve the appropriate data from your m_
result
}

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
37

Core Features

http://www.simba.com/docs/SDK/SimbaEngine_Java_API_Reference/
http://www.simba.com/docs/SDK/SimbaEngine_Java_API_Reference/
http://www.simba.com/docs/SDK/SimbaEngine_C++_API_Reference/
http://www.magnitude.com/

default:{
//throw exception – metadata column not found.
}

}

Overriding the Value of Default Properties

ODBC and JDBC connectors use connection, connector, environment, and statement
properties to specify and define their behavior and capabilities. The Simba SDK
provides default values for these properties. If the capabilities of your custom
connector are different from the specified defaults, or if you need to support the
requirements of a specific application, you can override these default values.

The Simba SDK implements these properties in the following classes in the Core
library:

Property Type Class Name of Property Map

Connection
properties

DSIConnection m_connectionProperties

Connector
properties

DSIDriver m_driverProperties

Environment
properties

DSIEnvironment m_environmentProperties

Statement
properties

DSIStatement m_statementProperties

Properties are represented as key-value string pairs, which are stored in a property
map as shown in the table above. Properties are initialized with their default value in
the constructor of the corresponding class.

You can override these properties in your DSII subclass of the corresponding Core
class, but you must only override the default value for any property during the
construction of each class instance. After that, property changes should only come
from the ODBC application calling the appropriate API function. The one exception to
this rule is that connection properties may be updated at the time a connection is
successfully established. This should be done before returning from the
CustomerDSIIConnection::connect function.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
38

Core Features

http://www.magnitude.com/

Each of these four Core classes has a function called SetProperty, which is used to
set the value for a property or attribute.

For a description of properties and default values in the C++ SDK, see the Simba SDK
C++ API Reference. Select Namespaces -> Simba::DSI then see the following
enumerations:

l DSIConnPropertyKey

l DSIDriverPropertyKey

l DSIEnvPropertyKey
l DSIStmtPropertyKey

For a description of properties and default values in the Java SDK, see the following
classes in the Simba SDK Java API Reference:

l ConnPropertyKey

l DriverPropertyKey

l EnvPropertyKey

l StmtPropertyKey

Note:

The term "property" and "attribute" are used interchangeably in the Simba
SDK. For example, a method might be called GetProperty but work with
AttributeData objects.

Example: Overriding the Value of Connection Properties

The example in this section shows how to override default property and attribute
values for the DSIConnection class. You can use the same method to override
default values in the DSIStatement, DSIDriver and DSIEnvironment classes.

Note:

This example is in C++ but it also applies to the Java SDK.

The example subclass of DSIConnection is called CustomerDSIIConnection. In
the CustomerDSIIConnection constructor, use the
DSIConnection::SetProperty()method to set the property or attribute value.
The signature of the DSIConnection::SetProperty function is:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
39

Core Features

http://www.simba.com/docs/SDK/SimbaEngine_C++_API_Reference/
http://www.simba.com/docs/SDK/SimbaEngine_C++_API_Reference/
http://www.simba.com/docs/SDK/SimbaEngine_Java_API_Reference/
http://www.magnitude.com/

virtual void SetProperty(

DSIProperties::DSIConnPropertyKeys::DSIConnPropertyKe
y in_key,
Simba::Support::Utility::AttributeData* in_value)

Example: Set the server name

The default value for DSI_SERVER_NAME is “”. It should be set to the name of the
DSI server. Pass in the key for the server name and the name of the server to the
SetProperty function.
SetProperty(

DSIProperties::DSIConnPropertyKeys::DSI_SERVER_NAME,
Utility::AttributeData::MakeNewWStringAttributeData
(<name_of_server>)

);

Example: Specify the Supported SQL_CHAR Conversions

The default value for DSI_SUPPORTED_SQL_CHAR_CONVERSIONS is DSI_CVT_
CHAR. If the application supports more conversions, you need to change this value.
Here, the value for the DSI_SUPPORTED_CHAR_CONVERSIONS property is made
up of a concatenation of all the values provided.
SetProperty(

DSIProperties::DSIConnPropertyKeys::DSI_SUPPORTED_SQL_
CHAR_CONVERSIONS,
Utility::AttributeData::MakeNewUInt32AttributeData(
DSIProperties::DSIConnPropertyValues::DSI_CVT_CHAR |
DSIProperties::DSIConnPropertyValues::DSI_CVT_NUMERIC
|
DSIProperties::DSIConnPropertyValues::DSI_CVT_DECIMAL
|
DSIProperties::DSIConnPropertyValues::DSI_CVT_INTEGER
|
DSIProperties::DSIConnPropertyValues::DSI_CVT_SMALLINT
|
DSIProperties::DSIConnPropertyValues::DSI_CVT_FLOAT |
DSIProperties::DSIConnPropertyValues::DSI_CVT_REAL |
DSIProperties::DSIConnPropertyValues::DSI_CVT_VARCHAR
|

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
40

Core Features

http://www.magnitude.com/

DSIProperties::DSIConnPropertyValues::DSI_CVT_
LONGVARCHAR |
DSIProperties::DSIConnPropertyValues::DSI_CVT_BINARY |
DSIProperties::DSIConnPropertyValues::DSI_CVT_
VARBINARY |
DSIProperties::DSIConnPropertyValues::DSI_CVT_BIT |
DSIProperties::DSIConnPropertyValues::DSI_CVT_TINYINT
|
DSIProperties::DSIConnPropertyValues::DSI_CVT_BIGINT |
DSIProperties::DSIConnPropertyValues::DSI_CVT_
TIMESTAMP |
DSIProperties::DSIConnPropertyValues::DSI_CVT_
LONGVARBINARY |
DSIProperties::DSIConnPropertyValues::DSI_CVT_WCHAR |
DSIProperties::DSIConnPropertyValues::DSI_CVT_
WLONGVARCHAR |
DSIProperties::DSIConnPropertyValues::DSI_CVT_
WVARCHAR)

);

Implementing Logging

The Simba SDK includes comprehensive logging functionality that you can use when
developing and troubleshooting your connector.

For information on how to turn on logging in the sample connectors, see Enable
Logging in the 5 Day Guides at http://www.simba.com/resources/sdk/documentation/.

For information on logging to Event Tracing for Windows (ETW), see Logging to Event
Tracing for Windows (ETW).

The Simba SDK enables multiple logger objects logging to separate files: one for the
single IDriver instance, and one for each IConnection instance. This allows for
easier debugging of threading issues, while still allowing for logging of issues that
happen before a connection is established. If only one central log is needed, then child
IConnection objects can return the parent IDriver log instance to have all logging
calls focus on one ILogger.

The ILogger has a default implementation in DSILog, each of which logs to a file.
There are several functions to log messages at varying levels of importance as
needed. The DSILog allows for filtering of logging messages based on both log level
and namespace, enabling you to narrow logging to suspect areas of your DSII. If the
default DSILog does not provide enough functionality, then you may choose to create

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
41

Core Features

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

a full implementation of ILogger directly from the interface that provides the
functionality that you need.

Log Settings

There are three settings that affect logging by default:

l LogLevel – Used to set the level of logging that is performed. Valid values are:
o 0 or “Off”
o 1 or “Fatal”
o 2 or “Error”
o 3 or “Warning”
o 4 or “Info”
o 5 or “Debug”
o 6 or “Trace”

l LogPath – Set the path that the default logging implementation will create the log
files in. Defaults to the current working directory.

l LogNamespace – Filters the logging based on the namespace/package that the
messages are coming from. For instance, the value “Simba” will filter all logging
messages to namespaces starting with “Simba” such as “Simba::Support”.

The settings are read from the registry at HKLM\SOFTWARE\<OEM NAME>\Driver
for both SimbaODBC and Simba.NET, while they are read from the connection string
for SimbaJDBC.

For Simba.NET on platforms using .NET Core, there may be no registry to read
configuration from if not using Windows. Instead, the configuration can be read from
one of several configuration files:

1. User-level configuration for the current application: %APPDATA%/[COMPANY]/
[APPLICATION]/[APPLICATION VERSION]/user.config.
(%APPDATA% is typically C:\Users\username\AppData\Roaming on
Windows and /home/username/.config/ on other operating systems.)

2. User-level configuration for the provider: %APPDATA%/[BRANDING]/
[BRANDING].config.

3. Application-level configuration: [APPLICATION DIRECTORY]/
[APPLICATION NAME].config.

4. Provider-level configuration: [PROVIDER DIRECTORY]/
[BRANDING].config.

The format of the configuration file is the same as a typical .NET App.Config file:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
42

Core Features

http://www.magnitude.com/

<configSections>
<section name="Simba.UltraLight"
type="Simba.DotNetDSI.ConfigReader, Simba.DotNetDSI" />
</configSections>
<Simba.UltraLight
LogLevel="0"
LogPath="/tmp/ultralight.log" />
</configuration>

The section name and name of the tag added are based on the branding set in the
provider, with " \ " replaced by " . ". If adding to an existing configuration file, the
<section> tag should be added to an existing <configSections> tag.

Hiding Sensitive Information in the Log Files

The Simba SDK does not log the value of the connection parameters username (UID)
and password (PWD). Instead, the values are logged as asterisks (****). The
DSIConnection::IsSensitiveAttribute()method determines whether or not
the value of a connection parameter should be logged. The
IsSensitiveAttribute()method is called by the ConnectionSettings class
when a connection is established.

Example

If you enter a username and password when connecting to the MyQuickstartDSII
connector, the resulting log file will contain the strings "PWD" = "***" and "UID" =
"***", rather than the actual username and password.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
43

Core Features

http://www.magnitude.com/

Your custom ODBC connector can specify additional connection parameters that
should not have their values logged in plain text. To do this, override
DSIConnection::IsSensitiveAttribute() in your Connection.cpp class.

For example, in the following code, the values of the connection parameters Secret1
and Secret2 will be logged as asterisks (*****):

bool QSConnection::IsSensitiveAttribute(const simba_wstring&
in_attribute)
{

if ((in_attribute.IsEqual("Secret1")) ||(in_
attribute.IsEqual("Secret2")))

{

return true;

}

return DSIConnection::IsSensitiveAttribute(in_
attribute);

}

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
44

Core Features

http://www.magnitude.com/

Logging in the Java DSI

The Java Simba SDK includes a helper class called LogUtilities to help you
implement logging functionality. This class provides a copy of many of the functions
that exist in ILogger, but the functions take an ILogger instance and do not take the
namespace or class names from which the logging call originates. Instead, it uses
reflection to determine that information, easing use of the logger.

Logging in the DotNet DSI

The dotNet Simba SDKincludes a helper class called LogUtilities to help you
implement logging functionality. This class provides a copy of many of the functions
that exist in ILogger, but the functions take an ILogger instance and do not take the
namespace or class names from which the logging call originates. Instead, it uses
reflection to determine that information, easing use of the logger.

Simba.NET Specific Features

Note that there is an extra setting for Simba.NET to provide logging if an error occurs
before a DSI DLL is loaded:

l PreloadLogging – Set to 0 (off) or 1 (on) to log to the file InitialDotNet.log. Once a
DSII DLL is loaded, the DSI ILogger will be used.

Related Topics

Logging to Event Tracing for Windows (ETW)

Enable Logging in the 5 Day Guides at
http://www.simba.com/resources/sdk/documentation/.

http://www.simba.com/resources/sdk/knowledge-base/enable-logging-in-odbc/

http://www.simba.com/resources/sdk/knowledge-base/simbaengine-logging/

Adding Custom Connection and Statement Properties

Custom properties can be added to Connection and Statement objects. These
properties allow you to customize how your connection and statement objects behave.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
45

Core Features

http://www.simba.com/resources/sdk/documentation/
http://www.simba.com/resources/sdk/knowledge-base/enable-logging-in-odbc/
http://www.simba.com/resources/sdk/knowledge-base/simbaengine-logging/
http://www.magnitude.com/

Important:

Before you can implement custom properties for your connection and
statement attributes, you should request and reserve a value for each attribute
from the Open Group. This ensures that no two connectors will assign the
same integer value to different custom attributes. If you do not reserve a unique
attribute or use one that is already in use, your connector may experience
compatibility issues with any application that uses the conflicting custom
attributes for other connectors.

For more information on requesting a value from the Open Group, refer to the
Connector-Specific Data Types, Descriptor Types, Information Types,
Diagnostic Types, and Attributes section of the MSDN ODBC Programmer’s
Reference.

Custom Properties in the C++ SDK

You must define keys for each of the custom Connection or Statement properties
or attributes for which you would like to add support. For each custom key, create a
Simba::Support::AttributeData* to store data for the property or attribute.
Use a map to map keys to their corresponding AttributeData*. For more
information on creating a custom key refer to the DSIConnProperties.h or
DSIStmtProperties.h header files in the folder [INSTALL_
DIRECTORY]\DataAccessComponents\Include\DSI .

To add custom connection and statement properties, implement the following methods
in your CustomerDSIIConnection and/or CustomerDSIIStatement class:

l IsCustomProperty()

In this function, check if the provided key corresponds with one of the standard
ODBC properties. Return false if it does not; true otherwise.

To see the list of keys for ODBC properties, see the
Simba::DSI::DSIStmtPropertyKey enum or the
Simba::DSI::DSIConnPropertyKey DSIConnPropertyKey enum in the
C++ API reference. Go to Simba SDK C++ API Reference, select the
Namespaces tab, select Simba::DSI, then search for DSIConnPropertyKey.

l SetCustomProperty()

In this function, set an AttributeData* for the custom property key. In your
implementation, check to ensure the provided key corresponds to a custom
property or attribute. If it does not, an appropriate error or exception should be
thrown and logged.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
46

Core Features

https://msdn.microsoft.com/en-us/library/ms714131(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms714131(v=vs.85).aspx
http://www.simba.com/docs/SDK/SimbaEngine_C++_API_Reference/
http://www.magnitude.com/

l GetCustomProperty()

This function retrieves the AttributeData* associated with a custom key. In
your implementation, check to ensure the provided key corresponds to a custom
property or attribute.

l GetCustomPropertyType()

This function retrieves the data type associated with the custom property or
attribute. Data types are defined in the Simba::Support::AttributeType
enum, located in the header folder [INSTALL_
DIRECTORY]\DataAccessComponents\Include\Support\AttributeD
ata.h.

Custom Properties in the Java SDK

Custom properties can be added to the connectors using the Java DSI with either the
JNI DSI API, or the SimbaJDBC component. When using the JNI DSI API, custom
properties are accessed in the same way that custom properties are accessed for
ODBC connectors. When using the SimbaJDBC component, the custom properties
are exposed through the following custom extensions to the Connection and
Statement objects:

l getAttribute(int)

Retrieve a custom property identified by the integer key.
l setAttribute(int, Object)

Set a custom property identified by the integer key.

Note:

Because these are custom extensions, applications will have to be coded to
explicitly use these functions.

Custom Properties in the DotNet SDK

Custom properties can be added to connectors using the DotNet DSI, but can only be
directly accessed when using the CLI DSI to build an ODBC connector.

Handling Connections

The ODBC application, the Simba ODBC layer, and your custom DSII layer interact to
establish a connection to your data store. An important part of this process is obtaining
all the required connection settings. The Simba SDK provides functions to help you
manage the set of required and optional connection settings, and to repeat the request
for settings until all required settings are obtained.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
47

Core Features

http://www.magnitude.com/

For a description of the connection process, see Understanding the Connection
Process below.

Obtaining Settings and Connecting to the Data Store

In your CustomerDSIIConnection::UpdateConnectionSettingmethod, the
in_connectionSettings parameter includes the connection settings that the user
specified in the connection string, DSN, and/or prompt dialog. Your implementation of
this method should return any modified or additional required (or optional) connection
settings in the out_connectionSettings parameter.

You can use the utility functions VerifyOptionalSetting and
VerifyRequiredSetting to help you check if a setting exists. If a setting does not
exist, these functions put the appropriate value in the out_connectionSettings
map.

To specify a list of acceptable values for one of your connection settings in the out_
connectionSettingsmap, you must enter it yourself. For example:

DSIConnSettingRequestMap::const_iterator itr = in_
connectionSettings.find(L"SomeSetting");
if (itr == in_connectionSettings.end())
{

// Missing the required key, so add it to the
requested settings.
AutoPtr<ConnectionSetting> reqSetting(new
ConnectionSetting(SETTING_REQUIRED));
reqSetting->SetLabel(L"SomeSetting");
reqSetting->RegisterWarningListener
(GetWarningListener());
std::vector<Simba::Support::Variant> values;
values.push_back(Variant(L"YES"));
values.push_back(Variant(L"NO"));
values.push_back(Variant(L"UNKNOWN"));
reqSetting->SetValues(values);
out_connectionSettings[L"SomeSetting"] =
reqSetting.Detach();

}

If out_connectionSettings contains additional required connection settings, then
the Simba ODBC Layer will call PromptDialog to request these settings. Connection
settings can be required or optional. This retrieve-request cycle repeats until all
required connection settings have been provided. Once all required settings have

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
48

Core Features

http://www.magnitude.com/

been provided (even if some optional settings have not been provided), then the
Simba ODBC Layer will call your CustomerDSIIConnection::Connect function.

Your implementation of the CustomerDSIIConnection::Connect function should
establish a connection to your data store. You should inspect the in_
connectionSettings parameter to retrieve any connection settings that are
needed to establish and set up a connection to your data store. You can use the utility
functions GetOptionalSetting and GetRequiredSetting to help you extract
the settings from the in_connectionSettings parameter.

When your implementation of the CustomerDSIIConnection::PromptDialog
function is called, you have the option of displaying a graphical dialog box to the user
for requesting parameters or other connection settings. See Creating and Using
Dialogs for more information about creating dialog boxes.

For example, if you require the user to enter a user id and a password, you can request
those parameters from the user using this dialog box. If you do not wish to implement a
dialog box, you can simply leave the PromptDialog function empty.

Example: Handling a Missing Password

Assume your DSII requires a user ID and password to establish a connection to your
data store. Then, an application attempts a connection using SQLDriverConnect
supplying the user ID setting but missing the password setting.

First, UpdateConnectionSettings is called so that all the settings that are needed
for a connection can be verified. Your UpdateConnectionSettingsf unction would
use VerifyRequiredSetting for both the user ID and password keys to verify that
they are present.

If any key is not present, it will be added to the out_connectionSettings
parameter by VerifyRequiredSetting. Since the password key is missing, out_
connectionSettings now contains that setting, and
UpdateConnectionSettings will return.

When the Simba ODBC layer detects that a required setting is missing, it calls
PromptDialog. This allows your DSII to prompt a dialog to the user to request any
additional or missing information. Once the user has filled out the dialog and returned,
the Simba ODBC layer will call UpdateConnectionSettings again to verify that all
the required settings are now present. If all the required settings are present, it will
then call Connect to proceed with the connection. If all the required settings are not
present, it continue the PromptDialog and UpdateConnectionSettings cycle
until the user cancels the dialog.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
49

Core Features

http://www.magnitude.com/

Understanding the Connection Process

This section provides a detailed explanation of how the end user, your ODBC-enabled
application, the Simba ODBC Layer and your DSII layer interact to establish a
connection to your data store. It then explains how you must handle the connection
process in your own custom connector.

When the end-user initiates a connection to your data store, the Simba ODBC Layer
will call your CustomerDSIIConnection::UpdateConnectionSettings
function. Note that in some cases the Simba ODBC Layer may call your
CustomerDSIIConnection::PromptDialog function, discussed later in this
section, first if the connection parameters indicate it should do so. This process is
shown in the diagram below:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
50

Core Features

http://www.magnitude.com/

Related Topics

Creating and Using Dialogs

Creating and Using Dialogs

The Simba SDK includes functionality to help you implement dialogs. You can use
these dialogs to retrieve user input such as connection settings or configuration

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
51

Core Features

http://www.magnitude.com/

information.

Dialogs in Windows

The Quickstart sample connector for Windows platforms includes a sample
implementation of a user dialog. For information on the Quickstart sample connector,
see Build a C++ ODBC Connector in 5 Days at
http://www.simba.com/resources/sdk/documentation/.

This section shows you how to use the PromptDialogmethod of your
CustomerDSIIConnection class to display a dialog box that prompts the user for
settings for this connection. For more information on the connection process, see
Handling Connections.

The CustomerDSIIConnection::PromptDialogmethod has the following
signature:

virtual bool PromptDialog(
Simba::DSI::DSIConnSettingResponseMap& in_connResponseMap,
Simba::DSI::DSIConnSettingRequestMap& io_connectionSettings,
HWND in_parentWindow,
Simba::DSI::PromptType in_promptType
);

This method has the following parameters:

l in_connResponseMap

The connection response map updated to reflect the user's input.
l io_connectionSettings

The connection settings map updated with settings that are still needed and
were not supplied. The connection settings from io_connectionSettings are
presented as key-value string pairs. The input connection settings map is the
initial state of the dialog box. The input connection settings map will be modified
to reflect the user's input to the dialog box.

l in_parentWindow

Handle to the parent window to which this dialog belongs.
l in_promptType

Indicates what type of connection settings to request either both required and
optional settings or just required settings.The return value for this method
indicates if the user completed the process by clicking OK on the dialog box

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
52

Core Features

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

(return true), or if the user aborts the process by clicking CANCEL on the dialog
box (return false).

Linux/Unix/macOS

Dialogs are also possible on Linux/Unix/macOS platforms, although the Quickstart
sample connector for those platforms does not include a sample implementation.

The PromptDialog function is the same as for Windows. However, the meaning of
the in_parentWindow argument is undefined. Different applications may potentially
pass in different types of window handles. Therefore, in_parentWindow can only be
used if your connector can make assumptions about running within a specific window
system or API toolkit. Otherwise, the window you create will need to be parentless.

Related Topics

Handling Connections

Canceling Operations

Prior to ODBC 3.8, only statement operations could be cancel using SQLCancel. In
ODBC 3.8 a new function called SQLCancelHandle was added that can cancel both
statement and connection operations. Note that canceling a statement in 3.8 using
SQLCancelHandle is identical to canceling it using SQLCancel.

Simba SDK supports both SQLCancelHandle and SQLCancel. The
implementations of DSIConnection and DSIStatement can handle and clear the
cancel requests through the OnCancel and ClearCancel callbacks. The following
table summarizes this functionality:

Class OnCancel ClearCancel

DSIConnection

Invoked when
SQLCancelHandle is
called on the
DSIConnection’s
handle.

Invoked at the
beginning of a
connection related
function that has
the ability to be
canceled.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
53

Core Features

http://www.magnitude.com/

Class OnCancel ClearCancel

DSIStatement

Invoked when
SQLCancelHandle or
SQLCancel is called
on the
DSIStatement’s
handle.

Invoked at the
beginning of a
statement function
that has the ability
to be canceled.

In OnCancel, the object can perform any cancellation logic such as setting flags to
indicate that an operation should be canceled.

In ClearCancel, the object can clear any pending cancel notification (e.g. clear
flags).

Handling Transactions

A transaction is a set of operations that are executed on a data store. If a transaction is
successful, all of the data modifications made during the transaction are committed. If
a transaction encounters errors and must be canceled or rolled back, then all of the
data modifications are erased.

If your data store supports transactions, you can enable them in your custom ODBC or
JDBC connector. To enable transactions in your connector, your DSII must enable
both read and write functionality.

To enable read/write capability on your connector:

l For the C++ SDK, call DSIPropertyUtilities::SetReadOnly, passing in
false for the second parameter.

l For the Java SDK, call PropertyUtilities::SetReadOnly, passing in
false for the second parameter.

Enabling Transaction Support

After adding read/write capability to your custom connector, you can enable
transaction support by creating your own implementation of the DSIIConection
class and implementing the BeginTransaction(), Commit(), and Rollback()
methods.

Implement the DSIConnection Class

Support for transactions is implemented in the DSIConnection class. Override this
class so you can provide your own implementation.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
54

Core Features

http://www.magnitude.com/

Specify that Transactions are Supported

The Simba SDK uses a property to specify the level of transaction support for a
custom connector. This is done differently in C++ and in Java.

To set the DSI_CONN_TXN_CAPABLE Property in C++:

Set the DSI_CONN_TXN_CAPABLE property in your DSIConnection object to
specify the level of transaction support that your connector can handle. You can use
the DSIPropertyUtilities::SetTransactionSupport() helper method.

Example: Setting the DSI_CONN_TXN_CAPABLE property in C++

In this example, a helper method called SetConnectionPropertyValues() is
used to set the DSI_CONN_TXN_CAPABLE property. This method is invoked from
the MyConnection class’s constructor. It calls the SetReadOnlymethod, passing in
false:
void MyConnection::SetConnectionPropertyValues(){
DSIPropertyUtilities::SetReadOnly(this, false);
DSIPropertyUtilities::SetTransactionSupport(this, DSI_TC_

DML);

...

In the above example, transaction support is set to DSI_TC_DML, which only supports
DML statements within a transaction.

To set the DSI_TXN_CAPABLE Property in Java:

Set the ConnPropertyKey.DSI_TXN_CAPABLEin your DSIConnection object to
specify the level of transaction support that your connector can handle. You can do
this using the DSIConnection::SetProperty()method, passing DSI_TXN_
CAPABLE as the attribute data.

Implement the Required Methods in the DSIConnection Class

To support transactions, your connector must implement the methods as described in
this section.

1. BeginTransaction()

This method is invoked by the Simba SDK at the start of a new transaction on the
connection. This method is responsible for performing any logic that is required
before the transaction starts, such as ensuring that transactions are supported,
or checking that a transaction is not already in progress.

Example: Check whether a transaction is already in progress

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
55

Core Features

http://www.magnitude.com/

In this example, the custom connector checks a member variable that tracks
whether a transaction is already in progress. If so, an exception is thrown.
Otherwise, the member is set to true at this point. Subsequent transaction
methods will check this variable to coordinate their workflows with the current
transaction.
void MyConnection::BeginTransaction() {

if (isInTransaction) {
XMTHROWGEN(" Illegal transaction state change

(BeginTransaction). ");
}
else {

isInTransaction = true;
}

}

2. Commit()

This method is invoked by the Simba SDK to commit the statements of a
transaction. This method is responsible for performing commit-related logic for
the outstanding transaction on the connection, such as storing any inserted or
updated data.

Example: Sample Commit() Implementation

This example shows one way that you could implement your Commit()method.
It also shows a helper method, MyConnection::CommitImp().
void MyConnection::Commit(){

if (!isInTransaction) {

XMTHROWGEN(" Illegal transaction state
change(Commit). ");

}
else {

isInTransaction = false;
CommitImpl();

}

}
//
//

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
56

Core Features

http://www.magnitude.com/

void MyConnection::CommitImpl() {

// Get the Connector's Tables
AutoValueMap<XMTableIdentifier, const
XMTableData>& driverTableDataMap = GetTableDataMap
();
CriticalSectionLock lock(m_criticalSection);
for (AutoValueMap<XMTableIdentifier, const
XMTableData>::iterator it = m_changedTables.begin
(); it != m_changedTables.end(); it++){

MapUtilities::InsertOrUpdate
(driverTableDataMap, it->first, it-
>second);
it->second = NULL;

}

}

MyConnection::Commit() first ensures that a transaction is in progress, and
then delegates the commit logic to MyConnection::CommitImpl.
MyConnection::CommitImpl first takes a lock. Then, it iterates through its m_
changedTablesmember, which is used to track tables that have had inserts or
updates to made to their values. Finally, it uses the
MapUtilities::InsertOrUpdate helper method to perform the actual data
value insertion/updates on these tables.

3. Rollback()

This method is invoked by the Simba SDK when a ROLLBACK statement is
encountered in a transaction query. This method is responsible for rolling back
data for an outstanding transaction on the connection, to the state it was in
before the start of the transaction.

Example: Sample Rollback() Implementation

This example shows one way that you could implement your Rollback()
method.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
57

Core Features

http://www.magnitude.com/

void XMConnection::Rollback(){

if (!isInTransaction){

XMTHROWGEN(" Illegal transaction state
change(Rollback). ");

}
else {

isInTransaction = false;
m_changedTables.DeleteClear();

}

}

This method first ensures that a transaction is in progress. If the transaction is in
progress, it resets isInTransaction to indicate that a transaction is no longer
in progress, followed by a call to m_changedTables.DeleteClear(), which
clears the listing of tables that have been modified.

Adding Support for Savepoints (SimbaJDBC only)

A savepoint is a way of implementing subtransactions, which are also called nested
transactions. A savepoint is used to mark a point in a transaction that you can roll back
to without affecting any work done in the transaction before the savepoint was created.
Savepoints are supported for DSIIs that are written in Java and use the SimbaJDBC
component.

Set the DSI_SUPPORTS_SAVEPOINTS property

Set the DSI_SUPPORTS_SAVEPOINTS property in your custom DSIConnection
object to DSI_SUPPORTS_SAVEPOINTS_TRUE.

Implement the Required Methods in the DSIConnection Class

Modify your custom DSIConnection object to override and implement the following
virtual methods:

1. createSavepoint(String)

This method is invoked by the Simba SDK when a SAVEPOINT statement is
encountered in a query. This method is responsible for creating a new Savepoint
with the specified name in the current transaction, and performing any save point
logic such as caching information about the current state of data, that could be
used to restore the state if a subsequent rollback operation occurs.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
58

Core Features

http://www.magnitude.com/

2. releaseSavepoint(String)

This method is invoked by the Simba SDK when a RELEASE statement is
countered in a query. This method is responsible for releasing the Savepoint with
the specified name so that the Savepoint is no longer available to rollback to.
This could also include performing any related logic such as freeing up
resources and clearing any state information that was related to the specified
save point.

3. rollback(String)

This method is invoked by the Simba SDK when a ROLLBACK statement is
encountered in a transaction query. This method is responsible for rolling back
data for an outstanding transaction on the connection, to the state it was in
before the start of the transaction.

Supporting Transactions through SQL

In some data sources, transactions can also be triggered by executing certain SQL
queries (e.g. BEGIN, COMMIT, AND ROLLBACK statements). Support for this is
provided through the ITransactionStateListener interface, which allows your
DSII to inform the Simba components of any changes in transaction state.

In your CustomerDSIConnection object, invoke the following methods on the m_
transactionStateListenermember exposed by the DSIConnection class.
This informs the Simba components of any changes to transaction state.

In the C++ SDK:

1. When a transaction has started, call
ITransactionStateListener::NotifyBegin.

2. When a transaction is committed, call
ITransactionStateListener::NotifyCommit.

3. When a transaction is rolled back, call
ITransactionStateListener::NotifyRollback.

In the Java SDK:

1. When a transaction has started, call
ITransactionStateListener.NotifyBeginTransaction.

2. When a transaction is committed, call
ITransactionStateListener::NotifyCommit.

3. When a transaction is rolled back, call
ITransactionStateListener::NotifyRollback.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
59

Core Features

http://www.magnitude.com/

If your DSII is written in Java and is using the SimbaJDBC component, then you may
need to notify the ITransactionStateListener about Savepoint operations as
well:

1. When a Savepoint is created, call
ITransactionStateListener::notifyCreateSavepoint.

2. When a Savepoint is released, call
ITransactionStateListener::notifyReleaseSavepoint.

3. When a transaction is rolled back to a Savepoint, call
ITransactionStateListener::notifyRollbackSavepoint.

Important:

ODBC does not support Savepoints, and attempting to use the
notify*Savepointfunctions on the ITransactionStateListener while
using the JNI DSI API will cause an exception.

Bulk Fetch in the C++ SDK

Prior to Simba SDK 10.0, data had to be retrieved from an IResult row by row and
column by column using the Movemethod to position the cursor, and RetrieveData
to return a cell of data. Retrieving data in this manner is acceptable for
small-to-medium sized datasets, or those with results spanning non-contiguous rows,
but has the following drawbacks:

l Data is accessed per cell, which means the ODBC layer of the SDK needs to
loop through each row and each column, invoking methods to retrieve and
convert each individual cell of data. This results in a large number of small data
transfers, with each of them requiring a small amount of overhead, but
collectively resulting in a noticeable impact on performance.

l The retrieval of each data cell involves invoking multiple virtual methods, which
can stall a CPU’s instruction pipeline and decrease a connector’s execution
performance.

As of 10.0, IResult now exposes the Bulk Fetch API which provides a more
optimized data retrieval mechanism allowing a connector to fetch contiguous rows of
data via a single method call and store the data directly into the buffer allocated by the
calling application. This “bulk fetch” mechanism eliminates the need to iterate over
rows and columns to return data and allows all the data for many rows to be returned in
one pass.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
60

Core Features

http://www.magnitude.com/

Note:

l Bulk fetch is currently supported for ODBC connectors that do not use the
SQL Engine and are not implemented by the Simba SDK’s ODBC Client.
Bulk Fetch can be implemented in SimbaServer, as described below.

l Bulk fetch is supported in the C++ SDK only.

Overview

This section describes the high-level overview for Bulk Fetch.

1. The ODBC layer of the SDK instantiates one Bulk Processor for each column
bound by the application. A Bulk Processor is an object that oversees the
process of copying and converting contiguous rows of data for a bound column.
Each Bulk Processor contains all the necessary information about the data
buffer and length/indicator field that the application has bound to the column as
well as a Bulk Converter which is an object that is able to convert values from the
SQL data type (the data type that the DSII uses to talk to the SDK) to a C data
type (the data type returned to the application).

2. The ODBC layer calls the BulkFetch method implementation of the DSII.
3. The DSII retrieves multiple rows for all the bound columns. Note that it can also

retrieve the data of other columns, but they won’t be used. The DSII can
organize the data as it wants in memory, but needs to leave it unchanged until
the bulk conversion is complete.

4. The DSII needs to instantiate one Column Segment per bound column. A
Column Segment describes where in memory the contiguous set of data rows for
a column can be found as well as the offsets required to find the next row. The
Bulk Processor uses a Column Segment so it knows where the values of the
retrieved rows have been stored in memory.

5. The DSII instructs the Bulk Processors to convert the columns (i.e. perform the
bulk fetch), providing them with the Column Segments it has just instantiated for
each bound column. The Bulk Processors convert all the SQL values retrieved
by the DSII to the C values directly into the buffer bound by the application.

6. Once the bulk fetch completes, the ODBC layer of the SDK does not need to
perform any further data processing because the Bulk Fetch has both converted
and copied the data for all rows to be returned directly to the application’s buffer.

Since the Bulk Fetch API writes directly to the buffer provided by the application, bulk
fetch functionality can only be used for columns which are bound by the calling
application (i.e. columns for which memory has been allocated and associated with
each column to store the data returned by the connector) and of those, only for
columns which have been selected for retrieval (i.e. those columns specified in a

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
61

Core Features

http://www.magnitude.com/

SELECT query). For efficiency reasons, the SDK also uses the Bulk Fetch API only
when the application requests multiple rows during each fetch (when the size of the
row set being requested contains at least two rows).

In its first release, the Bulk Fetch API is only supported for DSII’s that do not rely on the
SEN SDK SQLEngine for query execution. Performance is gained with “bulk fetch”
when multiple rows of bound columns are accessed and converted sequentially. The
SQLEngine on the other hand, gets the value of cells (the value of a specific column of
a specific row) on demand and might apply a different data conversion for each cell
value. This does not fit the Bulk Fetch API design.

In addition to the performance benefits listed above, bulk fetch also provides the
following advantages:

l Bulk Processors implemented in the SDK are independent of each other. A DSII
can therefore create one thread per bound column and do the bulk conversion of
all the columns in parallel. This could also include the retrieval of data if the rows
of the various columns are independent of each other (e.g. if the data store has a
columnar organization).

l Bulk Converter factories are created by the connection. The factory objects
which create the Bulk Converters are instantiated by the DSII’s connection
object (via IConnection::GetSqlToCBulkConverterFactory()) which
means the connection can determine the type of factories to create (for example,
a connection could return a factory type based on the type of server it is
connecting to). This provides more flexibility than the singleton converter factory
used under normal (non bulk fetch) data retrieval which forces all connections to
use the same type of converter.

Bulk Fetch API

This section describes the objects and methods that are related to the bulk fetch API.

Methods in IResult

These methods, defined in IResult, make up the bulk fetch API. These methods must
be implemented in your connector’s IResult class.

IsBulkFetchSupported()

This method is invoked by the Simba ODBC layer before attempting a bulk fetch, in
order to determine if bulk fetch is supported. This method takes in the indices of the
bound columns for which data is being selected, and allows the connector to tell the
Simba ODBC layer whether or not it can support bulk fetching for those columns.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
62

Core Features

http://www.magnitude.com/

If bulk fetch is not supported by your connector, then return false for
IsBulkFetchSupported. In the DSISimpleResultSet class provided by the
SDK, this method returns false and must be overridden to return true if your connector
supports bulk fetch. This class also defines a simple implementation for the
BulkFetchmethod which positions the cursor and then invokes a DoBulkFetch()
method which must be overridden to perform the bulk fetch.

BulkFetch()

This method is invoked by the Simba ODBC layer to perform a bulk fetch, when an
application requests rows for bound columns. This method takes in the number of
rows to return and a collection of IBulkProcessors. An IBulkProcessor converts
the data for multiple rows of a bound column and stores it directly into the buffers
bound to those columns by the application. Additional detail is provided below.

Additional Classes and Methods

This section summarizes the additional interfaces and classes that your connector will
use to support bulk fetch functionality. Note that default implementations are provided
for each. Additional detail for each of these components is provided later in this
section.

IBulkProcessor

This interface defines the interface for a Bulk Processor. The ODBC layer of the SDK
provides an implementation called SqlToCBulkConverterWrapper.
SqlToCBulkConverterWrapper delegates the copy-and-conversion process to an
ISqlToCBulkConverter (described below).

AbstractColumnSegment

A concrete implementation of this class is constructed by the IResult object when
the BulkFetchmethod is invoked by the Simba ODBC layer. The IResult object
will then pass this object to the IBulkProcessors for use in converting column data
from the data source. The SDK provides the following two default concrete
implementations, although applications can also implement their own:

l FixedRowSizeColumnSegment: suitable for use when the underlying data to
be retrieved is stored in a buffer in which a fixed number of bytes are allocated
per cell and the address of the cell for each successive row can be computed by
adding a constant offset to the memory pointer.

l DataLengthColumnSegment: suitable for use when the data to be retrieved is
stored in a buffer in which a variable number of bytes are allocated per cell, and
therefore the address of the next cell cannot be computed using a constant

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
63

Core Features

http://www.magnitude.com/

offset. This class stores a collection of DataLengthColumn objects each of which
describes the memory location and length of data for a particular cell.

l ServerColumnSegment: must be used when implementing bulk fetch on the
server. It is designed to optimize performance over the SimbaClient/Server wire
protocol. This class takes the following arguments:

l in_data - An array of pointers to the data
l in_lengths - an array specifying the length of each item of data in in_
data. The array value must be -1 if the corresponding data has no length (is
NULL). If the corresponding data is fixed-length type, the array value is not
used (but must be a non-negative integer). If the corresponding data is a
variable-length type, the array value must specify the length of the data, in
bytes.

l in_count - a counter specifying the length of in_data and in_lengths.

Note:

Using Bulk Fetch in SimbaClient/Server may cause issues in exposing
warnings and errors associated with fetching ResultSet data. When data is
fetched row by row, the error can be associated with a specific cell in the data,
and is returned to the client when the cursor moves to the next row. With Bulk
Fetch however, the error is returned to the client along with the bulk chunk of
data, and the error is not associated with a specific cell.

ISqlToCBulkConverter

Defines an interface for a Bulk Converter. The SDK provides a default implementation
called SqlToCBulkConverter which is (derives from) a templated functor and
performs a conversion from a SQL data type to a C data type. The SDK also #defines
hundreds of templated functor operator() methods for conversions of specific data
types. Although the use of templates per converter increases the size of the compiled
binary connector (i.e. a SqlToCBulkConverter class will be defined by the compiler
for each #defined template), it eliminates the need to subclass a converter for each
possible data type conversion and therefore eliminates virtual calls.

ISqlToCBulkConverterFactory:

Creates the ISqlToCBulkConverter object that will be used by the
IBulkProcesser object to copy and convert data for a specific column. The SDK
provides a default implementation called DSIBulkConverterFactory which,
through templates, determines the correct ISqlToCBulkConverter to return to
handle the data type of the column.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
64

Core Features

http://www.magnitude.com/

IConnection::GetSqlToCBulkConverterFactory

Invoked by the Simba ODBC layer on a connection to obtain the
ISqlToCBulkConverterFactory object that will be used to construct
theISqlToCBulkConverter objects for each SqlToCBulkConverterWrapper.
The Simba ODBC layer will create a SqlToCBulkConverterWrapper for each
column, passing the ISqlToCBulkConverterFactory to the constructor.

Settings

When supporting bulk fetch, you can allow your customers to configure additional
settings at runtime. This step is optional. For example, the following settings can be
configured in the registry or through a connection string:

l UseBulkFetch: set to 1 to enable bulk fetches, or 0 to disable.

l UseSqlEngine: must be set to 0 when enabling bulk fetches. Currently the SQL
Engine cannot be used with bulk fetches.

l ColumnSegmentId: specifies the Column Segment class that should be used
to provide information about the buffer bound by the application. Set to 1 to use
FixedRowSizeColumnSegment, 2 for the DataLengthColumnSegment, or
the ID of your custom Column Segment class (see Creating a Custom Column
Segment and Converter for more information).

One way to implement these runtime setting is to pass them in to the connector's
Connection::Connect()method. The method then passes the UseBulkFetch
and ColumnSegmentId values to the table during construction. The table then uses
these values to determine if bulk fetch is supported, and which Column Segment type
to use.

Adding Bulk Fetch to a Connector

To add bulk fetch to your connector, we recommend subclassing
DSISimpleResultSet. This is the quickest way to implement your IResult, and
provides easy access to the default implementations provided by the Simba SDK.

This section provides code samples that you can use when subclassing
DSISimpleResultSet and adding bulk fetch to your connector.

When subclassing DSISimpleResultSet, the first method to override is
IsBulkFetchSupported().This method is invoked by the Simba ODBC Layer for
each bound column in the bulk fetch, and provided with the column index. Your
connector will use this method to signal to the Simba ODBC layer whether bulk fetch is
supported for each column in the table from which data is being requested by a bulk

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
65

Core Features

http://www.magnitude.com/

fetch. If your connector does not support bulk fetch or if bulk fetch is disabled (e.g.
through a setting), then this method should always return false. The following code
snippet shows the implementation from an example DSISimpleResultSet-derived
class, XMTableLight.

bool XMTableLight::IsBulkFetchSupported(std::set<simba_
uint32>& in_boundColumnIndex)
{

UNUSED(in_boundColumnIndex);
return m_useBulkFetch;

}

This example shows the latter case where bulk fetch can be enabled or disabled. The
class stores a flag (m_useBulkFetch) which is set in the class’s constructor based
on the settings provided to it from the Simba ODBC layer (i.e. a flag indicating whether
or not the user enabled bulk fetch). IsBulkFetchSupported then returns this flag to
the ODBC layer regardless of the column index. In your connector, you will most likely
want to examine the column metadata corresponding to the column indexes provided
in in_boundColumnIndex and then decide whether or not bulk fetch is supported for
all corresponding columns for the query currently under execution.

Note:

When deriving a result set from DSISimpleResultSet, the default
implementation returns false, so DSISimpleResultSet-derived classes
don’t have to do anything if a connector doesn’t support bulk fetch. However, a
connector which directly implements IResult must implement this method and
return false if it doesn’t support bulk fetch.

The next method to implement is BulkFetch. DSISimpleResultSet provides a
BulkFetch implementation which keeps track of the current row, and delegates the
bulk fetch logic to a protected method called DoBulkFetch that your connector must
implement. The following snippet shows the BulkFetch implementation provided by
DSISimpleResultSet:

simba_unsigned_native DSISimpleResultSet::BulkFetch(
simba_unsigned_native in_rowsetSize,
const std::vector<Simba::DSI::IBulkProcessor*>& in_

bulkProcessors)
{

if (!m_hasStartedFetch)
{

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
66

Core Features

http://www.magnitude.com/

// Go to the first row.
m_hasStartedFetch = true;
m_currentRow = 0;

}
else
{

// Move on to the next row.
m_currentRow++;

}
const simba_unsigned_native rowsFetched(DoBulkFetch(in_

rowsetSize, in_bulkProcessors));
if (rowsFetched > 0)
{

m_currentRow += (rowsFetched - 1);
}
return rowsFetched;

}

BulkFetch takes in the number of rows to obtain along with the collection of bulk
processors to use for each column. Note that in default implementation, the Simba
ODBC layer will pass a collection of SqlToCBulkConveterWrapper objects.

In DSISimpleResultSet’s implementation, the class manages an m_currentRow
member, which is the index of the current row to obtain data from. Since multiple bulk
fetches can be invoked where each obtains a limited number of rows, this method
begins by checking m_hasStartedFetch to determine if a previous bulk fetch has
been made. If not (i.e. this is the first bulk fetch or the cursor has been closed), m_
currentRow is set to the first row, otherwise, it is advanced to the next row in
preparation of the bulk fetch. The method then delegates the bulk fetch logic to the
DoBulkFetchmethod, and forwards the parameters to that method. DoBulkFetch
performs the bulk fetch returning the number of rows fetched. BulkFetch then
advances m_currentRow by the number of rows fetched and adjusts it (subtracts 1)
since it is zero based.

For example, the XMTableLight class derives from DSISimpleResultSet and
provides the implementation of DoBulkFetch. The following code snippets break
down the main parts of this method:

simba_unsigned_native XMTableLight::DoBulkFetch(
simba_unsigned_native in_maxRows,
const std::vector<IBulkProcessor*>& in_bulkProcessors)

{

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
67

Core Features

http://www.magnitude.com/

const simba_unsigned_native firstRow(GetCurrentRow());
if (firstRow >= m_totalRows)
{

return 0;
}
const simba_unsigned_native rowsToReturn(simba_min(in_

maxRows, m_totalRows - firstRow));
const AutoVector<XMTableColumnDataBase>& columns(m_

tableData->GetDataCol());
AutoVector<IBulkProcessor>::const_iterator it(in_

bulkProcessors.begin());
const AutoVector<IBulkProcessor>::const_iterator end(in_

bulkProcessors.end());

This method begins by ensuring that m_currentRow has not been advanced passed
the end of the rows in the table. If it has (i.e. all rows have been fetched), then the
method returns 0 to indicate that no more rows are available to be fetched. The
method then determines the number of rows that will be returned by determining the
lower value of the number of rows remaining or the number of rows requested for bulk
fetch.

After this, the method prepares a collection of XMTableColumnDataBase objects
which provide access to the underlying data for each column. It then constructs an
iterator that will be used to iterate over each of the bulk processors passed to the
method by the Simba ODBC SDK, and perform the bulk fetches.

The next snippet shows the core loop where the method performs this iteration. The
purpose of this loop is to invoke the bulk fetch process on each column bound by the
application. This is accomplished by iterating through each Bulk Processor passed in
from the Simba ODBC layer, constructing the appropriate Column Segment object
based on the configuration settings, and invoking the Process method on the current
Bulk Processor, passing in the newly-constructed Column Segment describing where
the table data can be found.

for (; it != end; ++it)
{

IBulkProcessor& processor(**it);
const SelectListItem& item(GetSelectListItem
(processor.GetColumnIndex()));
const XMTableColumnDataBase& column(*columns
[item.first]);

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
68

Core Features

http://www.magnitude.com/

RightTrimmer* const rightTrimmer(item.second ? m_
rightTrimmers[item.first] : NULL);
switch (m_columnSegmentId)
{

case AbstractColumnSegment::FIXEDROWSIZE_ID:
... do fixed row size processing (see below)
break;
case AbstractColumnSegment::DATALENGTH_ID:
... do data length row processing (see below)
break;
case XMStringColumnSegment::XM_COLUMNSEGMENT_
ID:
... do row processing using a custom Column
Segment (see below)
break;

}

}

The loop starts by using the column index reported by the current Bulk Processor to
determine if the column data should be right trimmed (a typedef called
SelectListItem stores the index and a flag) and then obtains a reference to the
XMTableColumnDataBase object corresponding to the column index of the current
Bulk Processor, which contains the underlying data for the column.

A switch/case statement is then used to determine which type of Column Segment to
construct, based on the application settings:

switch (m_columnSegmentId)
{

case AbstractColumnSegment::FIXEDROWSIZE_ID:
{

std::vector<std::pair<const void*, simba_
uint32> > sourceBuffers(rowsToReturn);
simba_uint32 maximumDataSize = 0;
for (simba_signed_native index = 0; index <
rowsToReturn; index++)
{

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
69

Core Features

http://www.magnitude.com/

const RowIdentifier& rowId = m_rows
[firstRow + index];
sourceBuffers[index] =
column.GetBuffer(rowId);
if (maximumDataSize < sourceBuffers
[index].second)

{
maximumDataSize = sourceBuffers

[index].second;
}

}
std::vector<simba_byte> cachedDataBuffer
(maximumDataSize * rowsToReturn);
std::vector<simba_signed_native>
cachedLengthBuffer(rowsToReturn);
simba_byte* cellPtr = &cachedDataBuffer[0];
for (simba_signed_native index = 0; index <
rowsToReturn; index++, cellPtr +=
maximumDataSize)
{

const std::pair<const void*, simba_
uint32>& sourceBuffer =
sourceBuffers[index];
if (NULL != sourceBuffer.first)
{

memcpy(cellPtr,
sourceBuffer.first,
sourceBuffer.second);
cachedLengthBuffer[index] =
sourceBuffer.second;

}
else
{

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
70

Core Features

http://www.magnitude.com/

cachedLengthBuffer[index] =
CvtLength::MakeNull();

}

}
FixedRowSizeColumnSegment columnSegment(
&cachedDataBuffer[0],
maximumDataSize,
&cachedLengthBuffer[0],
sizeof(simba_signed_native),
rowsToReturn);
processor.Process(columnSegment);
break;

}
case AbstractColumnSegment::DATALENGTH_ID:
{

std::vector<DataLengthColumn>
dataLengthColumns(rowsToReturn);
for (simba_signed_native index = 0; index <
rowsToReturn; index++)
{

const RowIdentifier& rowId = m_rows
[firstRow + index];
const std::pair<const void*, simba_
uint32> columnData(column.GetBuffer
(rowId));
if (NULL == columnData.first)
{

dataLengthColumns
[index].SetAttributes(NULL,
CvtLength::MakeNull());

}
else
{

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
71

Core Features

http://www.magnitude.com/

dataLengthColumns
[index].SetAttributes
(columnData.first,
columnData.second);

}

}
DataLengthColumnSegment columnSegment
(&dataLengthColumns[0], rowsToReturn);
processor.Process(columnSegment);
break;

}
case XMStringColumnSegment::XM_COLUMNSEGMENT_ID:
{

// For the SQLite custom column segment, the
conversion is specialized depending on the
// column type. So delegate the conversion to
the colum object.
column.Process(processor, m_rows, firstRow,
rowsToReturn, rightTrimmer);
break;

}
...

}

Fixed Row Size Processing

In the case of a FixedRowSizeColumnSegment, the Column Segment constructor
takes in pointers to two buffers: one containing the underlying table data stored in a
contiguous array of values, and the other containing the data length for each cell
stored for the column.

Since this sample connector does not store its underlying table data contiguously, the
code first iterates through each row starting at the first row identified above, fetching
the cell value for the column along with the size of the data, and storing it in a
temporary collection of data/length pairs. During this process it also identifies the
maximum data size, and stores it in maximumDataSize. This is used further down to
specify the offset for finding the cell for the next row, within the buffer.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
72

Core Features

http://www.magnitude.com/

The code then separates and caches these data/length pairs into the two separate
buffers required by FixedRowSizeColumnSegment. When
FixedRowSizeColumnSegment is being constructed, the buffers are passed into
the constructor along with maximumDataSize, the size of the length values (which
specifies the offset to find the next cell size value), and the number of rows to fetch.
The segment uses maximumDataSize and the size of the length values so that it
knows where to find the next element in to two buffers respectively, as it iterates
through each row.

Finally, the Column Segment is passed to the Process method of the current Bulk
Processor to bulk fetch the data for the column. Process will then use its internal
converter to convert and copy each cell to the application buffer bound to the column.
Since the Simba ODBC layer has already configured the Bulk Processor with the
location of the application buffer, the Bulk Processor already knows where the data is
to be copied to.

Note that this example is for demonstration purposes only. Since the sample
connector doesn’t store its data in the format required by the
FixedRowSizeColumnSegment class, additional overhead in terms of processing
and memory was necessary to cache the variable length data and sizes into the
buffers expected by FixedRowSizeColumnSegment. Therefore, a better solution for
this type of table data would be to use the DataLengthColumnSegment as
described next.

Data Length Row Processing

In the case of DataLengthColumnSegment, a collection of DataLengthColumn
objects are created for each cell from each row to return. DataLengthColumn is a
helper class which describes the location and length for a single cell of data, and the
DataLengthColumnSegment class requires a collection of these objects for each
row to return, along with the total number of rows to return.

In the example snippet, the code iterates through each row, obtaining the row’s ID and
invoking column.GetBuffer to obtain the address where the cell’s data is stored for
that row. This address is stored a temporary pair object which takes in and stores the
location of the cell data, and automatically computes the sizeof the data based on the
second template parameter. Note that for simplicity, this example assumes that the
column contains integer data. In your connector, it may be necessary to compute or
obtain the length of cell data based on the type of data stored in the column (e.g.
variable length character data), rather relying on sizeof.

This information is then passed to the DataLengthColumn object via the
SetAttributesmethod. After the collection of DataLengthColumn objects has
been created, it’s passed along with the row count to return to a new

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
73

Core Features

http://www.magnitude.com/

DataLengthColumnSegment which in turn, is passed to the Bulk Processor to
perform the bulk fetch.

As this example shows, the use of DataLengthColumnSegment is a better solution
for the sample XMTableLight class than FixedRowSizeColumnSegment,
because XMTableLight stores its data in non-contiguous arrays and can easily and
more quickly describe the location and size of each cell by simply populating a
collection of DataLengthColumn objects.

Also note the use of the CvtLength class. This utility class provides methods which
allow the DSII to encode and decode the length of the data before and after data
conversion. This is necessary because the encoded length must be used when
creating Column Segments. Bulk Converters use this length to detect cases when
data is null or was not successfully retrieved from the data source. Custom Bulk
Converters also need to use this class when setting the target length resulting from the
conversion. The following list outlines the various cases that the CvtLength class
handles:

l Normal length: the length of data that is not null and was successfully converted
(no truncation required).

l Truncated length: the length of data was either truncated during data retrieval or
data conversion.

l Null value: a null value was retrieved from the data source. Note that null values
are not passed to the conversion functors in the SqlToCBulkConverter
template that handles the SDK Column Segment implementations (see
SqlToCBulkConverter.h). For optimization reasons, the Conversion
Functors do not handle null values and most of them will assert in debug mode or
generate an invalid value in release mode. Therefore the same must be done in
the implementation of a custom Column Segment.

l Retrieval error: used if the value of a cell cannot be retrieved successfully from
the data source. The default behaviour of the Column Segment implementations
provided by the SDK is to generate a retrieval error diagnostic. A DSII could
however decide to discard the row (not referencing it in the column segment) or
terminate the Bulk Fetch operation. The recommended approach is to handle it
in the same way as when encountering a retrieval error during a single cell fetch.

For more information about the various methods available, see CvtLength.h.

Row Processing using Custom Column Segment

The final case statement in the example, checks for a custom Column Segment ID and
the delegates the Bulk Fetch to the XMTableColumnDataBase object’s Process
method which has been set up to use a custom Column Segment. Information on
creating and using a custom Column Segment is provided next.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
74

Core Features

http://www.magnitude.com/

Creating a Custom Column Segment and Converter

The FixedRowSizeColumnSegment and DataLengthColumnSegment classes
provided by the SDK can be used by most connectors for bulk fetch because they
describe data in both fixed-length, and variable-length storage respectively. However,
developers are free to implement their custom Column Segment classes to improve
efficiency or provide additional convenience in specifying where data is located.

For example you could implement your column segment and StringColumnSegment
to provide direct access to your data address/length mappings, rather than requiring
the DSII to copy pointers/lengths into an intermediate buffer.

The following steps describe how to create and use a custom Column Segment:

1. Derive a new class from AbstractColumnSegment for your custom Column
Segment ensuring that at a minimum, the constructor takes in a number of type
simba_unsigned_native, which will be used to specify the number of rows
that are to be retrieved for a given bulk fetch. Additional parameters can also be
added as required by your connector. For example, XMColumnSegment also
takes in a reference to the underlying column data, a reference to the row ID’s
from which to obtain data, and the row number of the starting row:

XMColumnSegment(
const std::map<RowIdentifier, T>& in_columnData,
const std::vector<RowIdentifier>& in_rows,
simba_unsigned_native in_startRow,
simba_unsigned_native in_numRows) :
AbstractColumnSegment(XM_COLUMNSEGMENT_ID, in_numRows),
m_columnData(in_columnData),
m_rows(in_rows),
m_startRow(in_startRow)
{

// Do nothing.

}

2. Generate a unique “strategy” ID for the new class and pass this to
AbstractColumnSegment’s constructor (note that ID’s less than
AbstractColumnSegment::STARTCUSTOM_ID are reserved by the SDK).
For example, XMColumnSegment defines this ID as a static member called XM_
COLUMNSEGMENT_ID and then passes it to AbstractColumnSegment
constructor in the member initialization list. This is used by the Bulk Converter to
determine which type of concrete Column Segment has been passed to it.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
75

Core Features

http://www.magnitude.com/

3. Modify your implementation of your IResult’s BulkFetchmethod (or
DoBulkFetch if subclassing from DSISimpleResultSet) to perform or
delegate the bulk fetch process. Since the SQLite sample connector
demonstrates the use of different Column Segment types based on that
specified in its connector settings, it uses a switch/case statement in
XMTableLight::DoBulkFetch to check which Column Segment type was
specified and delegates accordingly. For example, if
XMStringColumnSegment::XM_COLUMNSEGMENT_ID was specified in the
connector’s settings (stored in the class’s m_columnSegmentIdmember), it
delegates the bulk fetch to an XMTableColumnDataBase object:

switch (m_columnSegmentId)
{

....
case XMStringColumnSegment::XM_COLUMNSEGMENT_ID:
{

column.Process(processor, m_rows,
firstRow, rowsToReturn, rightTrimmer);
break;

}
...

}

Note:

Connectors requiring their own custom Column Segment implementation
will always use their implementation rather than perform the check, as
was illustrated above, to determine the type. However a connector could
implement different column segment types depending on the metadata of
the column or mix the use of SDK Column Segments for some columns
with custom Column Segments for other columns.

4. Instantiate your custom Column Segment, and pass it to the Bulk Processor’s
Process method to perform the bulk fetch. For example, the
XMTableColumnDataBase object’s Processmethod instantiates an
XMColumnSegment and passes it directly to the Bulk Processor’s Process
method:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
76

Core Features

http://www.magnitude.com/

template<typename T> void XMTableColumnData<T>::Process(
Simba::DSI::IBulkProcessor& in_bulkProcessor,
const std::vector<RowIdentifier>& in_rows,
simba_unsigned_native in_startRow,
simba_unsigned_native in_numRows,
RightTrimmer* in_rightTrimmer) const

{
UNUSED(in_rightTrimmer);

in_bulkProcessor.Process(XMColumnSegment<T>(m_
dataColumn, in_rows, in_startRow, in_numRows));
}

5. Implement a custom ISqlToCBulkConverter class which can perform a
conversion using your custom Column Segment class. For example, a connector
might implement a XMSqlToCBulkConverter class to handle conversions for
XM’s underlying database. Its Convertmethod iterates through each row to
fetch, invoking XMColumnSegment::GetData to return the address and data
size for a cell from the underlying data source as a pair. It then uses that
information to perform the fetch and conversion of data for the cell by invoking
the conversion functor operator():

for (
simba_unsigned_native row = columnSegment.m_startRow,
endRow = row + columnSegment.GetNumberRows();
row < endRow;
++row, ++currentRow1Based, targetPtr += in_toDataOffset,
targetLenPtr = reinterpret_cast<simba_signed_native*>
(reinterpret_cast<simba_byte*>(targetLenPtr)+in_
toLengthOffset))
{

const std::pair<const void*, simba_uint32> data(columnSegment.GetData
(rowIDs[row % numRowIDs]));

if (!data.first)

{

*targetLenPtr = CvtLength::MakeNull();

}

else

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
77

Core Features

http://www.magnitude.com/

{

*targetLenPtr = in_toDataLength;

(*this)(

data.first,

data.second,

targetPtr,

*targetLenPtr,

in_listener);

}
}

6. Create a mapping between your custom converter and all SQL types that it
should convert. In the SQLitesample connector, the
XMSqlToCBulkConverterWrapperMap defines the mapping between the
SQL types the connector supports and the template class (implementing
ISqlToCBulkConverterWrapper) with which to wrap the functors for that
destination SQL type.

7. Create a custom class template with the same interface as
DefaultSqlToCBulkBuilderFuncGenerator (provided by the SDK). For
convenience, you can reuse some definitions from
DSISqlToCBulkBuilderFuncGenerator.h. The struct must have a static
GetBuildermethod which takes in a reference to an IConnection and
returns a new SqlToCBulkBuilderFunction.
SqlToCBulkBuilderFunction is a pointer to a factory function used by a
Bulk Converter factory to create the converter. The following sample shows one
way of implementing this functionality:
template <TDWType SqlType, TDWType SqlCType> struct
XMSqlToCBulkBuilderFuncGenerator{static
SqlToCBulkBuilderFunction GetBuilder
(Simba::DSI::IConnection& in_connection){

return Simba::DSI::Impl::SqlToCBulkBuilderFuncGenerator<

Simba::DSI::Impl::SENSqlToCConversionSupport<SqlType,
SqlCType>::IsSupported,

SqlType,

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
78

Core Features

http://www.magnitude.com/

SqlCType,

Simba::DSI::Impl::DSISqlToCBulkConverterFunctorMap,

XMSqlToCBulkConverterWrapperMap,

CharToCharIdentEncCvtFunctor,

CharToFromWCharCvtFunctor>::GetBuilder(in_connection);

}
};

This method delegates the creation to the SDK’s
SqlToCBulkBuilderFuncGenerator::GetBuilder method, but passes the
XMSqlToCBulkConverterWrapperMap type as a template parameter.

8. Override or modify the GetSqlToCBulkConverterFactorymethod in your
DSIConnection-derived class so that it instantiates a new
DSISqlToCBulkConverterFactory using your custom
SqlToCBulkBuilderFunction function. The following code snippet shows
the implementation of
XMConnection::GetSqlToCBulkConverterFactory which first checks if
a factory has been created, and if not, checks to see if the SQLite Column
Segment ID was specified. If it was specified, then a new
DSISqlToCBulkConverterFactory is created using XM’s custom
XMSqlToCBulkBuilderFuncGenerator as the template type:

const ISqlToCBulkConverterFactory&
XMConnection::GetSqlToCBulkConverterFactory(

{
if (m_sqlToCBulkConverterFactory.IsNull())
{

if (XMStringColumnSegment::XM_COLUMNSEGMENT_ID ==
m_XMSettings.m_columnSegmentId)

{
m_sqlToCBulkConverterFactory.Attach(

new
DSISqlToCBulkConverterFactory<XMSqlToCBulkBuilderFuncGene
rator>(*this));

}
else
{

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
79

Core Features

http://www.magnitude.com/

DSIConnection::GetSqlToCBulkConverterFactory();
}

}
 return *m_sqlToCBulkConverterFactory;
}

Creating a Custom Conversion Functor

A conversion functor is an object that defines the operator()method for an
ISqlToCBulkConverter implementation, to convert a specific SQL type to a
specific C type. More specifically, it performs the conversion and copying of a single
data cell of a specific data type, from the source to the target locations passed to it by
the SqlToCBulkConverterWrapper that contains the converter and invokes its
operator().

The SDK defines a generic conversion functor template class called SqlToCFunctor
along with templated operator() methods for all SQL-to-C data type conversions
supported by the SDK, however developers are free to extend or create customized
functors (e.g. to convert a special data type in your connector).

Note:

Extending or customizing functors can be done independently of creating a
custom Column Segment. A custom Column segment doesn’t require a
custom conversion functor, and a custom conversion functor does't require a
custom Column segment.

The following outlines the steps required to add an operator()method:

1. Define a new functor class, similar to SqlToCFunctor. This class can optionally
be a template class which takes in template parameters specifying the SQL and
C types to convert from and to. This class must also define operator() with
the same parameters that SqlToCFunctor’s operator() takes in:

void operator()(

const void* in_source,

simba_signed_native in_sourceLength,

void* in_target,

simba_signed_native& io_targetLength,

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
80

Core Features

http://www.magnitude.com/

IConversionListener& in_listener);

2. Create a new mapping between the converter and functor by defining a
templated structure which maps the SQL and C types for which the functor is to
convert. The SDK defines the following default mapping for the basic SQL-to-C
conversions:

template <TDWType SqlType, TDWType SqlCType>
struct DSISqlToCBulkConverterFunctorMap
{
 typedef SqlToCFunctor<SqlType, SqlCType> Type;
};

A connector can then extend this map as required. For example, a connector
could define functor classes called CustomCharConversionFunctor and
CustomIntToStringConversionFunctor to perform custom conversions of
characters and integers to strings respectively, after which, the following maps
could be defined:

template <TDWType SqlType, TDWType SqlCType>
struct CustomSqlToCBulkConverterFunctorMap
{
 typedef DSISqlToCBulkConverterFunctorMap<SqlType, Sql
CType> Type;
};
template <TDWType SqlCType>
struct CustomSqlToCBulkConverterFunctorMap<TDW_SQL_
CHAR, SqlCType>
{
 typedef CustomCharConversionFunctor<SqlCType> Type;
};
template <>
struct CustomSqlToCBulkConverterFunctorMap<TDW_SQL_
SINTEGER, TDW_C_CHAR>
{
 typedef CustomIntToStringConversionFunctor Type;
};

3. Specify the mapping in your SqlToCBulkBuilderFuncGenerator’s
GetBuilder()method. The following code snippet shows the SQLitesample’s
custom GetBuilder()method:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
81

Core Features

http://www.magnitude.com/

struct XMSqlToCBulkBuilderFuncGenerator
{
 static SqlToCBulkBuilderFunction GetBuilder
(Simba::DSI::IConnection& in_connection)

{
 return
Simba::DSI::Impl::SqlToCBulkBuilderFuncGenerator<
 Simba::DSI::Impl::SENSqlToCConversionSupport<SqlTyp
e, SqlCType>::IsSupported,
 SqlType,
 SqlCType,
 Simba::DSI::Impl::DSISqlToCBulkConverterFunctorMap,
 XMSqlToCBulkConverterWrapperMap,
 CharToCharIdentEncCvtFunctor,
 CharToFromWCharCvtFunctor>::GetBuilder(in_
connection);
 }
 };

The parameter:
Simba::DSI::Impl::DSISqlToCBulkConverterFunctorMap can
replaced with the mapping created in the previous step, for example,
CustomSqlToCBulkConverterFunctorMap.

For more information on optimizing data retrieval, see
http://www.simba.com/blog/optimization-of-odbc-data-retrieval-with-the-simbaengine-
sdk/

Parsing ODBC and JDBC Escape Sequences

Many SQL-enabled data stores represent data and implement SQL in slightly different
ways. To allow applications to handle these differences transparently, the ODBC and
JDBC standards specifies a set of escape sequences to represent functionality such
as date, time, scalar functions, and procedure calls. ODBC and JDBC connectors
must translate these escape sequences into a format that their data store supports.

The Simba SDK includes the MiniParser feature to help developers parse SQL
commands for escape sequences, then replace them with the command format
understood by their data store. SQL commands can contain multiple escape
sequences with multiple parameters, and escape sequences themselves can be
nested. The MiniParser implements all of the recursive processing and the creation of
complex regular expressions required to support escape sequences. Using the Simba

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
82

Core Features

http://www.simba.com/blog/optimization-of-odbc-data-retrieval-with-the-simbaengine-sdk/
http://www.simba.com/blog/optimization-of-odbc-data-retrieval-with-the-simbaengine-sdk/
http://www.magnitude.com/

SDK, it is easy for your connector to translate SQL commands containing complex,
nested escape sequences into a format that your data store understands.

ODBC and JDBC Escape Sequences

Escape sequences are grouped into types, making them easier to parse and process.
Notice they are all enclosed in curly braces ({ }). For example, some common
escape sequences are shown below:

Escape sequence type Format Example

date {d 'value'} {d '2001-01-01'}

scalar function {fn scalar-function}

{ fn
DAYOFWEEK(
DATE '2000-01-
01') }

procedure call {[?=]call procedure-name[([para-
meter][,[parameter]]...)]}

{?=call LENGTH
('hello world')}

For information about the complete set of ODBC escape sequences, see "ODBC
Escape Sequences" in the ODBC Programmer's Reference:
https://msdn.microsoft.com/en-us/library/ms711838(v=vs.85).aspx. For information
about JDBC escape sequences, see http://docs.oracle.com/cd/E13222_
01/wls/docs91/jdbc_drivers/sqlescape.html.

Note:

The Simba SDK handles all escape sequences in the ODBC and JDBC
specification.

Converting Simple Escape Sequences

Connectors must locate escape sequences and convert them to commands that are
understood by their data source.

Simple Example: Dates

Consider a SQL command that contains an escape sequence of type date:
SELECT OrderNum, OrderDate FROM Orders WHERE OrderDate = {d
'2015-08-12'}

A PostgreSQL connector converts the command as:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
83

Core Features

https://msdn.microsoft.com/en-us/library/ms711838(v=vs.85).aspx
http://docs.oracle.com/cd/E13222_01/wls/docs91/jdbc_drivers/sqlescape.html
http://docs.oracle.com/cd/E13222_01/wls/docs91/jdbc_drivers/sqlescape.html
http://www.magnitude.com/

SELECT OrderNum, OrderDate FROM Orders WHERE OrderDate = DATE
'2015-08-12'.

A Microsoft SQL connector converts the command as:
SELECT OrderNum, OrderDate FROM Orders WHERE OrderDate ='08-
12-2015'.

Converting Complex Escape Sequences

Escape sequences can be nested, requiring recursive programming to replace them
correctly.

Complex Example: Nested Escape Sequences

Given an escape sequence with the following format:
{fn EXTRACT(YEAR FROM {ts '2001-02-03 16:17:18.987654'}) }

A PostgreSQL connector converts the command as:
EXTRACT(YEAR FROM TIMESTAMP '2001-02-03 16:17:18.987654')

Non-Escaped Scalar Functions

Some applications use ODBC scalar functions in a SQL command without enclosing
the function in an escape clause. For example, an application might use CONVERT
(sqltype,value) instead of {fn CONVERT(value, odbctype)}. The
miniParser handles the CONVERT scalar function in non-escaped form. Currently,
other non-escaped scalar functions are not handled.

MiniParser Architecture

The miniParser is included in the Support package of the Simba SDK. It is composed
of two main classes:

ODBC Architecture:

l ODBCEscaper: searches the SQL command for ODBC escape sequences and
parameters. To use this class, pass an IReplacer implementation and the SQL
command to ODBCEscaper.Apply().

l IReplacer: converts each type of escape sequence to the format required for a
particular data store. Override this class to provide your own implementation.

This architecture is shown in the figure below:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
84

Core Features

http://www.magnitude.com/

JDBC Architecture:

l JDBCEscaper: searches the SQL command for JDBC escape sequences and
parameters. To use this class, pass an IReplacer implementation and the SQL
command to JDBCEscaper.Apply().

l IReplacer: converts each type of escape sequence to the format required for a
particular data store. Override this class to provide your own implementation.

Error Handling

This section explains how ODBCEscaper handles errors and malformed SQL
statements.

Text in unsupported locations is discarded

If a SQL statement is incorrectly formed and contains text in unsupported locations,
ODBCEscaper will discard the text. For example, the escape sequence {fn ABS
(myNum) bad string} is incorrectly formed, as no text is allowed after the function
name. In this case, ODBCEscaper will discard the text bad string.

Incorrectly formatted escape sequences are not sent to IReplacer

If an escape sequence is incorrectly formatted, ODBCEscaper will not pass it through
to IReplacer, and will leave it unchanged. For example, {D 2001-1-1} is
incorrectly formatted because it does not contain quotation marks (''). The incorrect
escape sequence is simply included in the final SQL command. This allows the data
store to handle the incorrect command sequence with the appropriate error.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
85

Core Features

http://www.magnitude.com/

Example Workflow

The following diagram shows how the ODBCEscaper and a sample IReplacer
implementation, PGOReplacer, work together to convert a SQL statement containing
parameters and escape sequences into a SQL statement for a PostgreSQL data store.

Note:

The work flow is the same for JDBCEscaper.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
86

Core Features

http://www.magnitude.com/

1. The connector calls ODBCEscaper.Apply(), passing in the SQL command
SELECT {fn char(0x30 + { fn ceiling(?)} + ? + {fn

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
87

Core Features

http://www.magnitude.com/

sansargs}) } --!?. This command contains nested functions, a custom
(non-ODBC) function, and a comment string.

2. ODBCEscaper starts with the inner most escape sequence, {fn ceiling
(?)}. First, it tells PGOReplacer to create the parameter marker.

3. PGOReplacer creates and returns the first parameter marker in the format that
the PostgreSQL data store understands.

4. ODBCEscaper then tells PGOReplacer to handle {fn ceiling(?)}, passing
in the first converted parameter, ($1).

5. PGOReplacer converts the ceiling function to CEIL as required by the
PostgreSQL data store, and uses the parameter marker ($1) in the function.

6. This process repeats until IReplacer converts all the escape sequences and
parameter markers. Then ODBCEscaper reassembles the SQL command,
including the comment and the string.

The original SQL command is now converted into a SQL command that PostgreSQL
data store can understand.

Example Implementation

This section shows an example implementation of IReplacer for a custom ODBC or
JDBC connector. The following steps are required:

l Step 1: Implement Your Custom IReplacer
l Step 2: Create an Instance of ODBCEscaper
l Step 3: Ensure Additional Requirements are Met

Step 1: Implement Your Custom IReplacer

Implement your IReplacer to convert ODBC standard escape sequences to the
commands that your data store understands.

Note:

l For Java, use JDBCEscaper instead of ODBCEscaper. All other
methods and techniques shown in this section are the same.

l In this example, IReplacer handles a subset of the possible ODBC
escape sequences. Typically, your custom ODBC connector implements
the complete set of ODBC escape sequences described in
https://docs.microsoft.com/en-us/sql/odbc/reference/appendixes/odbc-
escape-sequences.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
88

Core Features

https://docs.microsoft.com/en-us/sql/odbc/reference/appendixes/odbc-escape-sequences
https://docs.microsoft.com/en-us/sql/odbc/reference/appendixes/odbc-escape-sequences
http://www.magnitude.com/

Example

#include <Simba.h>
#include <ODBCEscaper.h>
static char const* keyword[] = {

"DATE ", "ESCAPE ", "TIME "
};
class MyReplacer : public IReplacer
{

MyReplacer()
{

m_numParams = 0;
}
simba_wstring operator()(ODBCEscaper::ESC_TYPE in_
etype, std::vector<simba_wstring>& args)
{

switch (in_etype)
{
// Date, Time, and Timestamp Escape Sequences
case ODBCEscaper::ESC_TYPE_DATE:
case ODBCEscaper::ESC_TYPE_ESCAPE:
case ODBCEscaper::ESC_TYPE_TIME:
{

return simba_wstring(keyword[in_etype -
ODBCEscaper::ESC_TYPE_DATE]) + args[0];
}
break;
// Here replace ? with ($1)....
case ODBCEscaper::ESC_TYPE_PARAM:
{

char buf[99];
sprintf(buf, "($%d)", ++m_
numParams);
// implicit conversion to simba_
wstring
return buf;

}
break;

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
89

Core Features

http://www.magnitude.com/

//Scalar Functions Escape sequences.
case ODBCEscaper::ESC_TYPE_FN:
{

if (args[0].IsEqual("CEILING",
false))
{
args[0] = "CEIL";
}
else if (args[0].IsEqual("CHAR",
false))
{
args[0] = "CHR";
}
else if (args[0].IsEqual("POWER",
false))
{
args[0] = "POW";
}
if ((args[0].IsEqual("CONVERT",
false)) && (3 == args.size()))
{
args[0] = "CAST";
}
return args[0] + "(" + simba_
wstring::Join(args.begin() + 1,
args.end(), ", ") + ")";

}
break;
// Handling the non-escaped scalar functions:
Note different argument order.
case ODBCEscaper::ESC_TYPE_FUNC:
{

if ((args[0].IsEqual("CONVERT",
false)) && (3 == args.size()))
{

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
90

Core Features

http://www.magnitude.com/

return "CAST_RAW(" + args[2] +
" AS " + args[1] + ")";

}
}
break;
// unimplemented Escape Types.
default:
{

return simba_wstring("TODO: ")
+ ODBCEscaper::type_name[in_etype];

}
break;
}

}

}
private:

int m_numParams;
};

Step 2: Create an Instance of ODBCEscaper

ODBCEscaper or JDBCEscaper handles the parsing of the SQL command,
identifying parameter markers and escape sequences while passing over the contents
of strings, identifiers and comments. It passes each parameter marker and escape
sequence to IReplacer, along with the type and argument information. IReplacer
returns the converted command.

Parsing is done from left to right, and in the case of nested escape sequences, from
the inner to the outer brackets. When the parsing and replacements are finished,
ODBCEscaper or and JDBCEscaper reassemble the SQL command, adding back
any strings or comments.

Create an instance of ODBCEscaper, then call ODBCEscaper.Apply(), passing a
instance of your custom IReplacer and the SQL command to parse and convert.
Because IReplacermaintains state for the duration of a SQL command, you must
create a new IReplacer for each SQL command that you want to parse.

Example:
ODBCEscaper esc;
MyReplacer replacer;
simba_wstring newSQLstr;

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
91

Core Features

http://www.magnitude.com/

// newSQLstr will contain the converted SQL command
simba_wstring newSQLstr = esc.Apply(replacer, "SELECT {fn LOG
({fn LOG10({fn POWER(10,2)})})}");

Step 3: Ensure Additional Requirements are Met

This section contains additional information and requirements for implementing your
IReplacer.

Return commands that are not ODBC or JDBC compliant

If IReplacer encounters a command escape sequence that is not part of the ODBC
or JDBC specification, it should return the command back to ODBCReplacer without
modification. This is illustrated in the "Workflow" section in Parsing ODBC and JDBC
Escape Sequences, as the parameter sansargs is not ODBC compliant.

Maintain a parameter count

Your IReplacer implementation must keep track of the number of parameter
markers it returns so that it can increment them correctly. For example, “@1”, “@2”,
“@3”, or ($1), ($2), ($3).

Reject unknown input

If your IReplacer implementation receives input that it does not know how to handle,
it must throw an exception or return the string in curly brackets ({ }).

Important:

For security reasons, an IReplacermust never return a string that forces a
syntax error.

Return an expression in parenthesis or surrounded by spaces

Where possible, the commands or expressions that your IReplacer returns should
be surrounded by parentheses (()) or spaces (). This allows the ODBCEscaper to
correctly reassemble the SQL command. The IReplacer sample surrounds the
commands and parameters with parentheses. For example, when returning the value
[‘4:05’::TIME], format the value in one of the following ways:

l [‘4:05’::TIME] // notice the spaces
l Or, [(‘4:05’::TIME)] // notice the parenthesis

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
92

Core Features

http://www.magnitude.com/

Ensure correct syntax

In order for ODBCReplacer to correctly parse and reassemble the SQL statement, the
IReplacer implementation must always return parameters and converted escape
sequences that contain correct syntax.

Important:

IReplacermust not return an odd number of quotes, an unterminated
comment, or mismatched parentheses.

Related Topics

Non-Escaped Scalar Functions

Error Handling

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
93

Core Features

http://www.magnitude.com/

Errors, Exceptions, and Warnings

This section explains how to implement the classes that handle errors, exceptions,
and warnings. It also explain how to use and localize the files that contain error
messages. Error message files are available in several different languages.

Handling Errors and Exceptions

ODBC, JDBC, and ADO.NET require that connector provide standard error codes so
that applications have a standard way of dealing with error conditions. Data stores can
also provide their own custom error codes. This section explains what your custom
connector should do when it encounters an error or an exception.

Using the ErrorException Class

When your DSII detects an error condition, it should throw an exception of type
ErrorException. This class has the following signature:
ErrorException(

DiagState in_stateKey,

simba_int32 in_componentId,

const simba_wstring& in_msgKey,

simba_signed_native in_rowNum = NO_ROW_NUMBER,

simba_int32 in_colNum = NO_COLUMN_NUMBER);

The parameters for this method are described below:

l in_componentId

The component id is used to determine which component threw the exception
and where the message should be loaded from. The list of reserved component
Ids (1-10) and their names can be found in SimbaErrorCodes.h. It is
suggested that any custom component Id you define for your DSII start counting
from 100.

l in_msgKey

The in_msgKey argument is a string shortcut to indicate which message to load
from the standard error message file or your own custom message source. For
information about error message files, see Localizing Messages.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
94

Errors, Exceptions, and Warnings

http://www.magnitude.com/

l in_stateKey

The in_stateKey argument is used to control which SQLSTATE code should be
associated with the error returned by ODBC. SQLSTATE is a 5-character
sequence defined by SQL standards that is used to return a standard error code.
The most common state to throw is DIAG_GENERAL_ERROR. A full list of
available DiagState keys can be found in DiagState.h.

Exception Macros in the Sample Connectors

The Quickstart sample connector provides sample macros that you can adapt to throw
your own exceptions. These macros are defined in Quickstart.h. For information
on using Quickstart, see the 5 Day Guides at
http://www.simba.com/resources/sdk/documentation/.

Example: Using Quickstart's Exception Macro

In the sample Quickstart connector, the following macro is used to throw an exception
if the required DBF setting is missing:

QSTHROW(DIAG_INVALID_AUTH_SPEC, L"QSDbfNotFound");

This throws an ErrorException with a DiagState of DIAG_INVALID_AUTH_
SPEC and the QSDbfNotFoundmessage key. The macro automatically includes the
Quickstart component Id.

Some messages are also parameterized, and there are sample macros to assist in
constructing the vector of parameters before throwing the exception.

Example: Throwing an Exception With Parameters

This example throws an ErrorException with a DiagState of DIAG_GENERAL_
ERROR and the QSInvalidCatalogmessage key.

QSTHROWGEN1(L"QSInvalidCatalog", in_schemaName);

in_schemaName is a simba_wstring parameter that is added to a vector and
passed to a constructor for ErrorException, which accepts a parameter vector. The
message source will use the parameter vector to do string substitution on special
markers in the message string.

Using or Building a Message Source

All exceptions and warnings in your custom connector are looked up by their message
key using an IMessageSource constructed by your custom connector. An
implementation of this class, called DSIMessageSource, is provided to handle
looking up any message key generated by SDK components. This class looks up the
messages in the error messages files. The error message files are located in the

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
95

Errors, Exceptions, and Warnings

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

directory [INSTALL_DIRECTORY]\DataAccessComponents\ErrorMessages.
The connector determines the location of this file by looking up the
ErrorMessagesPath value in the registry at HKLM\Software\<OEM
NAME>\Driver\, or inside the configuration file on Linux, Unix, or macOS platforms.

In order to provide messages of your own, you must register an error messages file
with DSIMessageSource or construct your own MyDSIIMessageSource class
deriving from IMessageSource. If you use DSIMessageSource, you will only be
responsible for providing an XML message file for all of the messages your DSII uses.
If you derive from IMessageSource, you will be responsible for looking up any
message key generated by either the SDK or your DSII.

All of the sample connectors register an additional message file with the default
DSIMessageSource, and it is recommended that your DSII do the same unless there
is good reason to do otherwise. The error messages XML files are placed in directories
named after the locale that the message files are associated with, for example,
[INSTALL_DIRECTORY]\DataAccessComponents\ErrorMessages\en-US.

For information about error message files, see Including Error Message Files.

Custom SQL States

SQLSTATE is a 5-character sequence defined by SQL standards. It provides detailed
information about the cause of a warning or error. The Simba SDK attempts to return
SQL states, or equivalent, that accurately follow the specifications of ODBC, JDBC,
and ADO.NET. However, in some cases your custom connector may need to return a
different SQL state than what is used by the SDK. In those cases, your DSII will return
a custom SQL state as described in the this section:

ODBC

Exceptions are implemented in the ErrorException base class. The predefined
SQL states are mapped to DiagStates, and there are constructors that take a
DiagState along with other information for this purpose. When using custom SQL
states, use the constructors that take a simba_string for the SQL state to provide
any 5 character SQL state.

Likewise, warnings with custom SQL states will post warnings to the
IWarningListener using the simba_string constructor instead of the
DiagState constructor.

JDBC

Exceptions are implemented in the DSIException base class. The predefined SQL
states are mapped to ExceptionID, and there are constructors that take an
ExceptionID along with other information for this purpose. When using custom SQL

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
96

Errors, Exceptions, and Warnings

http://www.magnitude.com/

states, use the constructors that take a String for the SQL state to provide any 5
character SQL state.

Likewise, warnings with custom SQL states will post warnings to the
IWarningListener using a Warning constructed with the String constructor
instead of the WarningCode constructor.

ADO.NET

Exceptions are implemented in the DSIException base class. Note that SQL states
are not directly supported by the ADO.NET API. Instead, the custom SQL state is
prepended to the exception error message. The predefined SQL states are mapped to
ErrorCode, and there are constructors that take an ErrorCode along with other
information for this purpose. When using custom SQL states, use the constructors that
take a string for the SQL state to provide any 5 character SQL state.

Likewise, warnings with custom SQL states will post warnings to the
IWarningListener using the string constructor instead of the WarningCode
constructor.

OLE DB

SQL states, custom or not, are exposed using the custom error object through the
ISqlErrorInfo interface. For details on the ISqlErrorInfo interface, see
http://msdn.microsoft.com/en-
us/library/windows/desktop/ms711569%28v=vs.85%29.aspx. Also, refer to the topic
How a Provider Returns an OLE DB Error Object in MSDN at
http://msdn.microsoft.com/en-
us/library/windows/desktop/ms723101%28v=vs.85%29.aspx.

Related Topics

Posting Warning Messages

Including Error Message Files

Localizing Messages

Posting Warning Messages

The Simba SDK supports warning messages in a similar way as it supports error
messages.

Using the IWarningListener interface

You can post warnings to an IWarningListener interface. The
DataStoreInterface core classes, DSIEnvironment, DSIConnection and

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
97

Errors, Exceptions, and Warnings

http://msdn.microsoft.com/en-us/library/windows/desktop/ms711569(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms711569(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms723101(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms723101(v=vs.85).aspx
http://www.magnitude.com/

DSIStatement, each have an associated IWarningListener. Your custom
implementation of these classes can access an IWarningListener through the
parent GetWarningListener()method.

For the complete list of warnings that can be posted to an IWarningListener, see
the file DataAccessComponents\Include\Support\DiagState.h in your
Simba SDK installation directory.

Similar to ErrorException, IWarningListener uses the error messages files
associated with the DSIMessageSource to retrieve the warning messages
corresponding to the error or warning code. For more information on this functionality,
see Including Error Message Files.

Subscribing to an IWarningListener

The SDK controls most of the classes that warning listeners can be registered with.
This means you don't have to explicitly register them in your custom connector code.
The one exception is the ConnectionSetting object - you must register the warning
listener with this class after construction. See the example in Handling Connections.

Posting Warnings to an IWarningListener

Use GetWarningListener()->PostWarning() to post a warning to the warning
listener.

Example: ConnectionSetting object Posting Warnings to an IWarningListener
// In CustomerDSIIEnvironment, CustomerDSIIConnection and
// CustomerDSIIStatement, use the parent GetWarningListener()
// function to retrieve the IWarningListener
this->GetWarningListener()->PostWarning(

Diagnostics::OPT_VAL_CHANGED,

ComponentKey,

L”WarningMessageKey”);

Related Topics

Posting Warning Messages

Including Error Message Files

Localizing Messages

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
98

Errors, Exceptions, and Warnings

http://www.magnitude.com/

Including Error Message Files

This section describes the error message files used by the SDK for ODBC and JDBC
connectors.

Error Messages in ODBC

The ODBC error messages are defined in .xml files. The table below describes each
file, and explains which error message files must be included when you distribute your
connector.

Error Message File Name Description Do I Need to Ship this
File?

ODBCMessages.xml

Contains the error
messages for the
ODBC, DSI, and
Support components.

Yes, always with your
connector.

If you distribute
SimbaClient for ODBC,
you will also need to
include this file.

ClientMessages.xml
Contains the error
messages for
SimbaClient for ODBC.

Only if you are
distributing
SimbaClient for ODBC.

CSCommonMessages.xml

Contains the error
messages for the
Client/Server protocol
components.

Only if you have built
your connector as a
server.

If you distribute
SimbaClient for ODBC,
you will also need to
include this file.

ServerMessages.xml
Contains the error
messages for
SimbaServer.

Only if you have built
your connector as a
server.

CLIDSIMessages.xml
Contains the error
messages for the
CLIDSI component.

Only if your connector
uses the CLIDSI
component.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
99

Errors, Exceptions, and Warnings

http://www.magnitude.com/

Error Message File Name Description Do I Need to Ship this
File?

JNIDSIMessages.xml
Contains the error
messages for the
JNIDSI component.

Only if your connector
uses the JNIDSI
component.

Organizing your ODBC Error Message Files

By default the SDK uses the English – United States (en-US) locale. You can add
support for additional locales by organizing your additional language files in one of the
following ways:

Subdirectory organization

You can store each locale’s message files in a subdirectory, where the subdirectory is
named using the locale code.

Example: Subdirectory organization of message files
...\ErrorMessages\en-US\ODBCMessages.xml
...\ErrorMessages\fr-CA\ODBCMessages.xml
...\ErrorMessages\ja-JA\ODBCMessages.xml

Single directory organization

You can store all message files for every locale in a single folder. The name of each
locale is added as a suffix in the file names.

Example: Single directory organization of message files
...\ErrorMessages\ODBCMessages_en-US.xml
...\ErrorMessages\fr-CA\ODBCMessages_fr-CA.xml
...\ErrorMessages\ja-JA\ODBCMessages_ja.xml

Error Messages in JDBC

The JDBC error messages are divided into several files. The table below describes
each file, and explains which error message files must be included when you distribute
your connector.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
100

Errors, Exceptions, and Warnings

http://www.magnitude.com/

Error Message File Name Description Do I Need to
Ship this File?

JDBCMessages.properties

Contains the
error messages
for the JDBC
component.

Yes, always
with your
connector.

If you
distribute

SimbaClient
for JDBC, you
will also need
to include this

file.

DSIMessages.properties

Contains the
error messages
for the DSI and

Support
components.

Yes, always
with your
connector.

If you
distribute

SimbaClient
for JDBC, you
will also need
to include this

file.

CSMessages.properties

CommunicationsMessages.properties

Messages.properties

Contains the
error messages
for SimbaClient
for JDBC and

the
Client/Server
protocol

components.

Only if you are
distributing
SimbaClient
for JDBC.

Organizing your JDBC Error Message Files

By default, the SDK uses the English – United States (en-US) locale. You can add
support for additional locales using Java Resource Bundles.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
101

Errors, Exceptions, and Warnings

http://www.magnitude.com/

The common convention for localization with resource bundles is to organize the error
message files in a hierarchy. This ensures that messages from a parent message file
will be used, even if a locale is not supported.

For example, the structure for message files could be organized in the following
hierarchy. In this example, is the base file name is messages:

Note:

Each message file must be registered separately with DSIMessageSource .

Related Topics

Handling Errors and Exceptions

Posting Warning Messages

Localizing Messages

Localizing Messages

Simba SDK includes sample string resources for the warning and error messages that
it may generate. These strings are provide in English, as well as other languages
including German, French, Spanish, and Japanese. These files are intended as a
starting point to aid you in the localization process. You can modify the localized
strings that are provided, provide your own connector-specific messages, and add
support for additional languages.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
102

Errors, Exceptions, and Warnings

http://www.magnitude.com/

Note:

The files provided for languages other than English are not complete. Some of
these strings are still in English and require further translation.

Customers can configure the locale, or language, of the messages that the connector
uses. Configuration can be done connector-wide so that all connections use the same
locale for their messages, or per-connection so each connection uses a different
locale.

Configuring the Connector Locale

Customers can configure the locale of connector for all connections (connector-wide
locale) or for individual connections. If the locale is not configured, the default locale of
US English (en-US) is used for all messages.

Configuring the Connector-Wide Locale

A single locale is specified for the connector, and all connections use the same
language for any messages.

To configure the connector-wide locale on Windows:

1. In the Windows registry, navigate to the following registry key:
l For 32-bit connectors on 32-bit machines or 64-bit connectors on 64-bit
machines, navigate to HKEY_LOCAL_
MACHINE\SOFTWARE\<Company>\<ConnectorName>\Driver, where
<Company> is your company name and <ConnectorName> is the name of
your connector.
For example, for the Simba Quickstart connector, navigate to HKEY_
LOCAL_MACHINE\SOFTWARE\Simba\Quickstart\Driver.

l Or, for 32-bit connectors on 64-bit machines, navigate to HKEY_LOCAL_
MACHINE\SOFTWARE\Wow6432Node\
<Company>\<ConnectorName>\Driver, where <Company> is your
company name and <ConnectorName> is the name of your connector.
For example, for the Simba Quickstart connector, navigate to HKEY_
LOCAL_
MACHINE\SOFTWARE/Wow6432Node\Simba\Quickstart\Driver.

2. In the <Customer>/<ConnectorName>/Driver section of the registry, add or
modify the DriverLocale key to contain the desired locale code. For a list of
locale codes, see Locale Codes.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
103

Errors, Exceptions, and Warnings

http://www.magnitude.com/

To configure the connector-wide locale on Unix, Linux, and macOS:

1. Locate the .ini configuration file for the desired connector.
2. Modify the DriverLocale string to contain the desired locale code. For a list of

locale codes, see Locale Codes.

Configuring Per-Connection Locale

A locale is configured for each connection, so each connection can use a different
language for error messages. If the locale is not configured for a connection, then the
connector-wide locale is used.

To configure the connection-wide locale on Windows:

1. In the Windows registry, navigate to the to the registry key for the DSN that is
used for the connection:

l For 32-bit connectors on 32-bit machines or 64-bit connectors on 64-bit
machines, navigate to HKEY_LOCAL_
MACHINE\SOFTWARE\ODBC\ODBC.INI\<Company>DSII, where
<Company> is your company name.
For example, for the Simba Quickstart connector, navigate to HKEY_
LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\QuickstartDSII.

l Or, for 32-bit connectors on 64-bit machines, navigate to HKEY_LOCAL_
MACHINE\SOFTWARE\Wow6432\ODBC\ODBC.INI\<Company>DSII,
where <Company> is your company name.
For example, for the Simba Quickstart connector, navigate to HKEY_
LOCAL_
MACHINE\SOFTWARE\Wow6432\ODBC\ODBC.INI\QuickstartDSII.

2. Modify the Locale key to contain the desired locale code. For a list of locale
codes, see Locale Codes.

To configure the connector-wide locale on Unix, Linux, and macOS:

1. Locate the .ini configuration file for the desired connector.
2. Modify the Locale string to contain the desired locale code. For a list of locale

codes, see Locale Codes.

Locale Codes

Locales are specified using a two-letter language code in lower case and an optional
two letter country code in upper case. If a country code is specified, it must be
separated from the language code by a hyphen (-).

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
104

Errors, Exceptions, and Warnings

http://www.magnitude.com/

Examples:

l en-US (English – United States)
l fr-CA (French – Canada)
l it-IT (Italian – Italy)
l de-DE (German – Germany)
l es-ES (Spanish – Spain (Traditional))
l ja (Japanese)

The language code can be any language in the ISO 639-1 standard:
http://www.loc.gov/standards/iso639-2/php/code_list.php. The country code can be
any country in the ISO 3166-1 Alpha-2 standard: http://www.iso.org/iso/country_
codes/iso-3166-1_decoding_table.htm.

Localizing Your Connector

The Simba SDK provides English strings for the error and warning messages that its
components generate. These messages are contained XML files for ODBC and in a
Java Resource Bundle for JDBC. When developing your own connector, you can
create additional messages in English for any errors and warnings that are specific to
your connector. To provide your connector-specific messages, create connector-
specific XML files or Java a Resource Bundle containing your messages in the same
format as the exiting Simba SDK message files. For information about error messages
files, see Including Error Message Files.

DSIMessageSource automatically handles the loading and exposure of these
messages to your connector. Your connector has to call
DSIMessageSource::RegisterMessages, passing in the root name of the
connector specific message file. The root name is the file name without an extension
or locale code. For example, the root name for the QuickStart connector is
QSMessages. A good place to call this method is in the constructor of the connector
class that inherits from DSIDriver.

The connector can also implement its own message source by inheriting from
DSIMessageSource and handling connector-specific messages, which may be in
different format and location than those from the Simba SDK. For example, the
messages may be stored in a database. The handling of SDK messages in this case
can still be delegated to DSIMessageSource. Alternatively, IMessageSource can
be implemented directly, but the implementation must handle both the connector
specific messages and the Simba SDK messages. For more information on
implementing error messages, see Using or Building a Message Source in Handling
Errors and Exceptions.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
105

Errors, Exceptions, and Warnings

http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.iso.org/iso/country_codes/iso-3166-1_decoding_table.htm
http://www.iso.org/iso/country_codes/iso-3166-1_decoding_table.htm
http://www.magnitude.com/

To support a locale for which the Simba SDK provides a translation when using the
default DSIMessageSource class, translate the messages in your connector-specific
message file and follow the naming convention described in the following subsections.
To support a locale for which the SDK does not provide a translation, translate both the
connector-specific and Simba SDK message files.

Additional Language Support

In addition to the languages that are shipped with the Simba SDK, translated
messages strings for other languages are also available. For more information on
obtaining these strings, contact Simba Technologies Inc.

Related Topics

Localizing Messages

Posting Warning Messages

Including Error Message Files

Localizing Messages

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
106

Errors, Exceptions, and Warnings

http://www.magnitude.com/

Multithreading

The Simba SDK typically handles all processing in a single thread, using the same
thread as the application uses to make the ODBC or JDBC request. However, multiple
threads may be started in the following cases:

l If the application creates a new thread for each ODBC or JDBC connection, each
request is processed on its own thread. Processing is handled concurrently.

l In a client/server deployment, multiple clients can send a request to the same
Simba Server. SimbaServer handles each request on its own thread.

In addition, the Simba SDK provides support for multithreading that you can use in
your custom ODBC or JDBC connector.

Using the Thread Class (C++ only)

The Thread class provides the implementation for a thread. There are different
options for using this class in your custom connector:

l You can subclass the Thread class and implement the DoExecute() interface.
l Or, you can call StartDetachedThread(), passing in a pointer to a function
that will be executed when the thread is started.

Note:

There is no overall difference in functionality between these methods.

Using the ThreadPool Class

The ThreadPool class starts and manages the running threads. It implements the
pool of threads, and is responsible for creating new threads and assigning tasks to
them.

To implement a multi-threaded environment using the ThreadPool class:

1. To make a runnable task, subclass ITask and implement the Run()method.
2. Call the PostTask()method to add runnable tasks to a queue of unprocessed

tasks on the ThreadPool class.

Note:

The maximum number of threads is specified by m_maxThreads.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
107

Multithreading

http://www.magnitude.com/

Asynchronous ODBC Support

The Simba SDK enables your custom ODBC connector to support asynchronous
ODBC. ODBC 3.8 supports asynchronous execution of ODBC connection functions,
while ODBC 3.52 only supports asynchronous execution of statement functions. For
more information about asynchronous ODBC support, see
http://msdn.microsoft.com/en-us/library/ms713563%28v=vs.85%29.aspx

Simba SDK 9.3 and later releases supports the polling method for this asynchronous
functionality. However, this support varies by platform as listed below.

Note:

Executing functions asynchronously using the polling method involves calling
the same function is repeatedly until the function no longer returns SQL_
STILL_EXECUTING. When repeatedly calling the function in such a loop, it’s
recommended that the same parameters be passed each time and that their
values remain unchanged. This will prevent any unexpected errors from
occurring.

Windows 7 +

l SQLBROWSECONNECT
l SQLCOLATTRIBUTE
l SQLCOLUMNPRIVILEGES
l SQLCOLUMNS
l SQLCONNECT
l SQLDESCRIBECOL
l SQLDESCRIBEPARAM
l SQLDISCONNECT
l SQLDRIVERCONNECT
l SQLENDTRAN
l SQLEXECDIRECT
l SQLEXECUTE
l SQLFETCHSCROLL
l SQLFETCH
l SQLFOREIGNKEYS
l SQLGETDATA
l SQLGETTYPEINFO

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
108

Multithreading

http://msdn.microsoft.com/en-us/library/ms713563(v=vs.85).aspx
http://www.magnitude.com/

l SQLMORERESULTS
l SQLNUMPARAMS
l SQLNUMRESULTCOLS
l SQLPARAMDATA
l SQLPREPARE
l SQLPRIMARYKEYS
l SQLPROCEDURECOLUMNS
l SQLPROCEDURES
l SQLPUTDATA
l SQLSETPOS
l SQLSPECIALCOLUMNS
l SQLSTATISTICS
l SQLTABLEPRIVILEGES
l SQLTABLES

Non-Windows including iODBC, UnixODBC, SimbaDM

l SQLCOLUMNPRIVILEGES
l SQLCOLUMNS
l SQLEXECDIRECT
l SQLEXECUTE
l SQLFETCHSCROLL
l SQLFETCH
l SQLFOREIGNKEYS
l SQLGETTYPEINFO
l SQLPRIMARYKEYS
l SQLPROCEDURECOLUMNS
l SQLPROCEDURES
l SQLSPECIALCOLUMNS
l SQLSTATISTICS
l SQLTABLEPRIVILEGES
l SQLTABLES

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
109

Multithreading

http://www.magnitude.com/

Note:

l Asynchronous functionality at the connection level is not supported on
non-Windows platforms.

Critical Section Locks

A critical section is a section of code that accesses a shared resource, where this
resource must not be accessed at the same time as another thread. For example, only
one thread at a time should write to a log file. If multiple threads write to a log file at the
same time, the resulting text in the file could be an unpredictable mix up of text from
each thread.

It is important to implement critical section locks when using either the Java or the C++
SDKs. If you are using the Java SDK, you can use standard Java classes to handle
locking. If you are using the C++ SDK, you can use the classes provided by the Simba
SDK.

Critical Section Locks in the C++ SDK

A critical sections of code should be specific using a CriticalSection object. A
CriticalSectionLock object can then be used to lock this critical section to
prevent concurrent access by another thread.

Tip:

Your implementation of GetDriverLog, for example
CustomerDSIIDriver::GetDriverLog, should use a
CriticalSectionLock.

To use critical sections and critical section locks:

1. Include the following files:
#include “CriticalSection.h”
#include “CriticalSectionLock.h”

2. Define a CriticalSectionmember variable. For example:

Simba::Support::CriticalSection m_criticalSection;

3. For functions that use shared resources, use a CriticalSectionLock to lock
the critical section. Add the following line of code to the start of the function:

CriticalSectionLock lock(&m_criticalSection);

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
110

Multithreading

http://www.magnitude.com/

The lock will be released once the function returns.

For more information on the CriticalSection and CriticalSectionLock
classes, see the Simba SDK C++ API Reference.

Concurrency Support

Some ODBC functions can be run concurrently on statements that share the same
connection, while other functions block.

For example, the ODBC catalog function SQLTables cannot be run concurrently.
Suppose a thread is executing SQLTables on a statement, while another thread
attempts to execute a function on another statement that shares the same connection.
The second thread blocks until SQLTables on the first thread is finished.

This section explains the concurrency behaviour for the different ODBC functions, and
explains how to change the behaviour from concurrent to blocking.

ODBC Functions that Support Concurrency

By default, the following ODBC functions support concurrency:

l SQLPrepare

l SQLCloseCursor

l SQLFreeStmt

l SQLMoreResults

l SQLAllocHandle

l SQLFreeHandle

These functions can be executed concurrently, even if the statements that are
executing them share the same connection. For example, suppose a statement is
executing a function on a connection. If you pass that connection handle to
SQLAllocHandle(), the SQLAllocHandle() function is executed concurrently
and does not block.

Similarly, suppose two statements, Statement1 and Statement2, are using the
same connection. Statement1 is already executing. You can call SQLFreeHandle
() on Statement2 and it will not block.

Overriding the Default Behaviour

If you want these functions to block by default, you can change the default behaviour
by setting a connector property.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
111

Multithreading

http://www.simba.com/docs/SDK/SimbaEngine_C++_API_Reference/
http://www.magnitude.com/

To set ODBC functions to block:

In your IDriver implementation, set the DSI_DRIVER_ALLOW_INCREASED_
ODBC_STATEMENT_CONCURRENCY property to false:

SetProperty(DSI_DRIVER_ALLOW_INCREASED_ODBC_STATEMENT_
CONCURRENCY, AttributeData::MakeNewUInt32AttributeData
(DSI_AIOSC_FALSE));

ODBC Functions that Do Not Support Concurrency

The following ODBC functions do not support concurrency:

l SQLExecute
l SQLExecDirect
l All catalog functions.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
112

Multithreading

http://www.magnitude.com/

API Overview

This section introduces the functionality and workflows of the C++ DSI API and the DSI
API Extensions, which are the main APIs that you use to build a custom connector.
The Java APIs are similar.

DSI API

The DSI API exposes the classes needed to build your own Data Store Interface
Implementation using C++. The C# and Java versions of these classes, the DotNet
DSI API and the Java DSI API, provide similar functionality as the C++ classes.

The DSI API functionality is grouped into Core classes and Data Engine classes.

Core classes

The Core classes provide all of the essential functionality to establish and manage the
connection to your data source:

Class Description

IDriver

IDriver is a singleton instance constructed when the
connector is first loaded. Its primary responsibility is to
construct IEnvironment objects and manage any
connector-wide properties. An abstract base class
DSIDriver is provided to assist in some of these
responsibilities, including initializing defaults and
managing properties.

IEnvironment

IEnvironment objects correspond to the ODBC
environment (ENV) handles allocated by
SQLAllocHandle. Their primary responsibility is to
construct IConnection objects and manage any
environment properties. An abstract base class
DSIEnvironment is provided.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
113

API Overview

http://www.magnitude.com/

Class Description

IConnection

IConnection objects correspond to the ODBC
connection (DBC) handles allocated by
SQLAllocHandle. Their primary responsibility is to
handle user authentication, construct
IStatementobjects, and manage any connection
properties. An abstract base class DSIConnection is
provided.

IStatement

IStatement objects correspond to the ODBC statement
(STMT) handles allocated by SQLAllocHandle. Their
primary responsibility is to construct IDataEngine
objects and manage any statement properties. An abstract
base class DSIStatement is provided.

IMessageSource

IMessageSource is responsible for loading error
messages and warnings from your connector. An abstract
implementation DSIMessageSource is provided to load
messages generated by the SDK. For more information,
see "Using or building a message source" in Handling
Errors and Exceptions.

ILogger

ILogger is responsible for storing or printing log
messages from your connector. Each of the IDriver,
IEnvironment, IConnection, and IStatement
classes has a GetLog()method which must return the
most appropriate logger for that object. You may share
loggers between all the objects or construct a different
logger for each. The DSIFileLogger class is fully
implemented to store the log messages to a text file, but
you may change the behaviour in any way by extending
the ILogger interface directly or by subclassing the
partially implemented DSILoggerclass.

Data Engine classes

The Data Engine classes are the subset used to perform the data access functions
against your data store:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
114

API Overview

http://www.magnitude.com/

Class Description

IDataEngine

IDataEngine is responsible for constructing an
IQueryExecutor when preparing queries or
constructing an IResult for catalog function metadata.
An abstract base class DSIDataEngine is provided to
assist in implementing filters for the catalog function
metadata.

IQueryExecutor IQueryExecutor is responsible for executing a query
and generating IResults objects.

IResults

An IResults object represents a collection of one or
more IResult objects. DSIResults provides a basic
implementation for accessing and managing a collection
of IResult objects.

IResult

IResult is responsible for retrieving column data and
maintaining a cursor across result rows. At a minimum, the
cursor should support movement in a forward-only
direction. Abstract base classes
DSISimpleResultSetand
DSISimpleRowCountResult are provided to deal with
some basic functionality.

Related Topics

Simba SDK C++ API Reference

Simba SDK Java API Reference

Building Blocks for a DSI Implementation

Lifecycle of DSI Objects

API Overview

This section introduces the functionality and workflows of the C++ DSI API and the DSI
API Extensions, which are the main APIs that you use to build a custom connector.
The Java APIs are similar.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
115

API Overview

https://www.simba.com/docs/SDK/SimbaEngine_C++_API_Reference
https://www.simba.com/docs/SDK/SimbaEngine_Java_API_Reference
http://www.magnitude.com/

DSI API

The DSI API exposes the classes needed to build your own Data Store Interface
Implementation using C++. The C# and Java versions of these classes, the DotNet
DSI API and the Java DSI API, provide similar functionality as the C++ classes.

The DSI API functionality is grouped into Core classes and Data Engine classes.

Core classes

The Core classes provide all of the essential functionality to establish and manage the
connection to your data source:

Class Description

IDriver

IDriver is a singleton instance constructed when the
connector is first loaded. Its primary responsibility is to
construct IEnvironment objects and manage any
connector-wide properties. An abstract base class
DSIDriver is provided to assist in some of these
responsibilities, including initializing defaults and
managing properties.

IEnvironment

IEnvironment objects correspond to the ODBC
environment (ENV) handles allocated by
SQLAllocHandle. Their primary responsibility is to
construct IConnection objects and manage any
environment properties. An abstract base class
DSIEnvironment is provided.

IConnection

IConnection objects correspond to the ODBC
connection (DBC) handles allocated by
SQLAllocHandle. Their primary responsibility is to
handle user authentication, construct
IStatementobjects, and manage any connection
properties. An abstract base class DSIConnection is
provided.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
116

API Overview

http://www.magnitude.com/

Class Description

IStatement

IStatement objects correspond to the ODBC statement
(STMT) handles allocated by SQLAllocHandle. Their
primary responsibility is to construct IDataEngine
objects and manage any statement properties. An abstract
base class DSIStatement is provided.

IMessageSource

IMessageSource is responsible for loading error
messages and warnings from your connector. An abstract
implementation DSIMessageSource is provided to load
messages generated by the SDK. For more information,
see "Using or building a message source" in Handling
Errors and Exceptions.

ILogger

ILogger is responsible for storing or printing log
messages from your connector. Each of the IDriver,
IEnvironment, IConnection, and IStatement
classes has a GetLog()method which must return the
most appropriate logger for that object. You may share
loggers between all the objects or construct a different
logger for each. The DSIFileLogger class is fully
implemented to store the log messages to a text file, but
you may change the behaviour in any way by extending
the ILogger interface directly or by subclassing the
partially implemented DSILoggerclass.

Data Engine classes

The Data Engine classes are the subset used to perform the data access functions
against your data store:

Class Description

IDataEngine

IDataEngine is responsible for constructing an
IQueryExecutor when preparing queries or
constructing an IResult for catalog function metadata.
An abstract base class DSIDataEngine is provided to
assist in implementing filters for the catalog function
metadata.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
117

API Overview

http://www.magnitude.com/

Class Description

IQueryExecutor IQueryExecutor is responsible for executing a query
and generating IResults objects.

IResults

An IResults object represents a collection of one or
more IResult objects. DSIResults provides a basic
implementation for accessing and managing a collection
of IResult objects.

IResult

IResult is responsible for retrieving column data and
maintaining a cursor across result rows. At a minimum, the
cursor should support movement in a forward-only
direction. Abstract base classes
DSISimpleResultSetand
DSISimpleRowCountResult are provided to deal with
some basic functionality.

Related Topics

Simba SDK C++ API Reference

Simba SDK Java API Reference

Building Blocks for a DSI Implementation

Lifecycle of DSI Objects

Lifecycle of DSI Objects

The objects of the DSI API have a lifecycle that is modeled on, though not exactly the
same as, the lifecycle of ODBC handles. This section explains the lifecycle in the C++
SDK for ODBC connectors.

The IDriver object is instantiated when the connector is loaded, and a single
instance is alive until the connector is unloaded.

The IDriver object creates an IEnvironment when an application allocates
environment handles. IDriver can create multiple IEnvironment objects. These
are guaranteed to have been destroyed by the time the IDriver is destroyed.

IEnvironment create IConnections, which are guaranteed to have been
destroyed by the time the parent IEnvironment has been destroyed.
IConnections can be created and freed when an application chooses, but are
typically long-lived objects, with multiple actions occurring before being destroyed.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
118

API Overview

https://www.simba.com/docs/SDK/SimbaEngine_C++_API_Reference
https://www.simba.com/docs/SDK/SimbaEngine_Java_API_Reference
http://www.magnitude.com/

IConnections create IStatements, which are guaranteed to have been destroyed
by the time the parent IConnection has been destroyed. IStatements can be
short- or long-lived objects depending on the application. If the application re-uses
statements, then they tend to be long-lived, while if the application does not re-use
statements they tend to be short-lived.

IStatements create IDataEngines, which are guaranteed to have been destroyed
by the time the parent IStatement has been destroyed.

IDataEngines create IQueryExecutors, which are guaranteed to have been
destroyed by the time the parent IDataEngine has been destroyed.
IQueryExecutors have a lifespan that matches the lifespan of a prepared and
executed, or directly executed, query. A single IQueryExecutor is used for multiple
executions of a prepared query.

Any objects created by an IQueryExecutor are guaranteed to have been destroyed
by the time the parent IQueryExecutor has been destroyed.

IQueryExecutors create IResults, which are destroyed by the
IQueryExecutors that created them. As stated above, IResults are guaranteed
to have been destroyed before the IQueryExecutor.

IResult objects are accessed through IResults objects. However, the timing of
their creation and destruction is determined by a connector’s implementation. The
DSIResults implementation creates IResult objects during construction and
destroys them during destruction. Note that an IResult object is not accessible after
it has been destroyed by the parent IResultsobject.

Related Topics

API Overview

Working With the Java API

This section describes the features in the Simba SDK that are specific to the Java API.
JDBC Time and Timestamp with Timezone

JDBC exposes the time and timestamp types with timezone information, represented
as a Calendar object. If your data store supports timezone information for these
types, it can be accessed by the TimeTz and TimestampTz types, both for insertion
and retrieval.

To supply timezone information when retrieving data, instead of using the normal
java.sql.Time or java.sql.Timestamp types, use the supplied
com.simba.dataengine.utilities.TimeTz or
com.simba.dataengine.utilities.TimestampTz types. These types are

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
119

API Overview

http://www.magnitude.com/

essentially a pair of the datetime class, along with a Calendar that supplies the
timezone information. The SDK will automatically perform the correct operations to
interpret that data when it passes it to applications.

To use timezone information when inserting data, use the getTimeTz() and
getTimestampTz()methods of the DataWrapper class to get the classes which
hold both the datetime types and the Calendar holding the timezone information. If
your data store does not support timezones for the datetime types, calling the normal
getTime() and getTimestamp()methods will automatically convert the datetime
types to the local timezone.

JDBC Updatable ResultSets

JDBC provides the functionality to modify result sets that are generated from
statements. SimbaJDBC allows you to add this functionality to your JDBC connector, if
your data source supports it, by making the following changes to your CustomerDSII:

1. Set the DSI_SUPPORTS_UPDATABLE_RESULT_SETS property in your
CustomerDSIIConnection object to a combination of DSI_SUPPORTS_
URS_INSERT, DSI_SUPPORTS_URS_DELETE, and DSI_SUPPORTS_URS_
UPDATE, depending on the extent of the modifications you will support on your
result set.

2. Override and implement the following virtual methods:
a. appendRow() – Add a new empty row to the end of the result set.
b. deleteRow() – Delete the row at the current cursor position.
c. writeData() – Write data to the specified cell in the current row.

3. The following virtual methods from IResultSet should also be overridden and
implemented. However, you may choose to return false if this information is
not available:
a. rowDeleted() – Determine if the current row has been deleted.
b. rowInserted() – Determine if the current row has been inserted.
c. rowUpdated() – Determine if the current row has been updated.

4. The following virtual methods from IResultSetmay also optionally be
overridden and implemented:
a. onStartRowUpdate() – Called before writing data to update a row. This

is not called after appendRow because it is implied that data will be written.
b. onFinishRowUpdate() – Called after writing all updated or inserted data

in a row.

Developing for different Versions of JDBC

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
120

API Overview

http://www.magnitude.com/

Simba SDK includes implementations for building connectors that work with JDBC 4.0,
4.1, and 4.2. You can develop connectors for any of these versions of JDBC, or you
can develop a ‘hybrid’ connector that works with multiple versions, instantiating the
appropriate classes at runtime.

Interface Versions

This section lists the classes that have different versions in order to support the
different versions of JDBC:

AbstractDataSource

l Use JDBC4AbstractDataSource for JDBC 4.0
l Use JDBC41AbstractDataSource for JDBC 4.1
l Use JDBC42AbstractDataSource for JDBC 4.2
l Use HybridAbstractDataSource for hybrid versions

AbstractDriver

l Use JDBC4AbstractDriver for JDBC 4.0
l Use JDBC41AbstractDriver for JDBC 4.1
l Use JDBC42AbstractDriver for JDBC 4.2
l Use HybridAbstractDriver for hybrid versions

ObjectFactory

l Use JDBC4ObjectFactory for JDBC 4.0
l Use JDBC41ObjectFactory for JDBC 4.1
l Use JDBC42ObjectFactory for JDBC 4.2
l Use HybridJDBCObjectFactory for hybrid versions

If you are upgrading the code for an existing connector developed using Simba SDK
9.1 or earlier, then you must rename and modify your implementations of
JDBCAbstractDataSource, JDBCAbstractDriver, and JDBCObjectFactory
to implement the appropriate classes listed in the table above. If you are upgrading
from Simba SDK 9.4, you may need to remove support for JDBC 3.0 if your
implementation has support for it. If you are creating a new connector, then determine
the appropriate classes to implement from the table above.

Internally, the Simba SDK includes JDBC version-specific implementations for the
various JDBC classes such as SConnection, SDatabaseMetadata, etc. Examples
of these include S3Connection, S4Connection, etc. Each version of the
AbstractFactory will therefore return the appropriate subclasses for its target
JDBC version (e.g. JDBC4ObjectFactory’s creationConnection()method

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
121

API Overview

http://www.magnitude.com/

will return an S4Connection object. In the case of a hybrid connector, its factory will
determine which classes to create at runtime as described in the next section.

Determing and Recording the JDBC Version at Runtime

When developing a hybrid connector, the connector must determine which version of
JDBC is running, and pass this information to the Simba SDK via the
HybridAbstractDataSource and HybridAbstractDriver classes.

While there are a number of techniques for determining the JDBC version at runtime,
JavaUltralight checks the value of the ‘MODE’ parameter in the connection string. For
information on the Java Ultralight sample connector, see JavaUltralight Sample
Connector. The following example shows a connection string that includes this MODE
parameter:
jdbc:simba://User=odbc_user;Password=odbc_user_
password;MODE=JDBC4

If the MODE parameter does not exist, JavaUltraLight detects its absence and then
assumes that JDBC 4.0 should be used.

JavaUltralight provides an example of determining the version using the connection
string. Its HybridUtilities class contains a static method that looks for this
parameter and, if found, returns the appropriate JDBC version enum:

public final class HybridUtilities
{

public static JDBCVersion runningJDBCVersion(String
modeProperty)

{
if ((null != modeProperty) && (modeProperty.equals

("JDBC42")))
{

return JDBCVersion.JDBC42;
}
else if ((null != modeProperty) &&

(modeProperty.equals("JDBC41")))
{

return JDBCVersion.JDBC41;
}
else
{
return JDBCVersion.JDBC4;
}

}

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
122

API Overview

http://www.magnitude.com/

}

Once the JDBCVersion enum version is determined, it must then be passed to the
Simba SDK by implementing the runningJDBCVersion()methods when
subclassesing HybridAbstractDriver and HybridDataSource.

The following example shows how JavaUltralight’s ULJDBCHybridDriver and
ULJDBCHybridDataSource classes use the static
HybridUtilities::runningJDBCVersion()method, described above, to pass
this information to the Simba SDK:

public class ULJDBCHybridDriver extends HybridAbstractDriver
{

private String m_mode = null;
protected Pair<IConnection, ConnSettingRequestMap>
getConnection(Properties info) throws SQLException
{

Pair<IConnection, ConnSettingRequestMap>
result = super.getConnection(info);
ConnSettingRequestMap connectionProperties =
result.value();
if ((null != connectionProperties) && (null
!= connectionProperties.getProperty
(ULPropertyKey.MODE)))
{

m_mode =
connectionProperties.getProperty(
ULPropertyKey.MODE).getString();
}
return result;

}
protected JDBCVersion runningJDBCVersion()

{

return
HybridUtilities.runningJDBCVersion
(m_mode);

}

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
123

API Overview

http://www.magnitude.com/

}
public class ULJDBCHybridDataSource extends
HybridAbstractDataSource
{

protected JDBCVersion runningJDBCVersion()

{

return HybridUtilities.runningJDBCVersion
(getCustomProperty(ULPropertyKey.MODE));

}

}

Connector Auto-Loading

To allow for the auto-loading of a JDBC 4.0, JDBC 4.1, JDBC 4.2, or hybrid connector,
you must have the file METAINF/services/java.sql.Driver containing the
connector class to load in this .jar.

To create the file using Ant, add the following Service tag to the .jar tag in the
connector’s .xmlbuild file:
<service type="java.sql.Driver"
provider="your.driver.class.name"/>

For example, JavaUltralight’s JavaUltraLightBuilder.xml build file specifies the
following for JDBC 4.0 and hybrid builds respectively:

<service
type="java.sql.Driver" provider="com.simba.ultralight.core.jd
bc4.ULJDBC4Driver"/>
<target name="JavaUltraLightBuildDebug4"

.

.
<jar jarfile="${jardest}/${JavaUltraLight4Jar}"

basedir="${dest}" includes="com/simba/**">
<service type="java.sql.Driver"

provider="com.simba.ultralight.core.jdbc4.ULJDBC4Driver"/>
</jar>

</target>

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
124

API Overview

http://www.magnitude.com/

<target name="JavaUltraLightBuildDebugHybrid"
depends="JavaUltraLightCompileDebugHybrid,

UnjarHybrid"
description="generate the Java UltraLight Jar file in

debug mode">
<mkdir dir="${jardest}"/>

.

.
<jar jarfile="${jardest}/${JavaUltraLightHybridJar}"
basedir="${dest}"
includes="com/simba/**">

<service
type="java.sql.Driver" provider="com.simba.ultralight.core.hy
brid.ULJDBC4Driver"/>

</jar>
</target>

To auto-load the connector in your application, simply pass in
jdbc:simba://localhost along with the user name and password as the URL, as
shown in the following code example:

String url = "jdbc:simba://localhost;UID=username;PWD=test;";
m_connection = DriverManager.getConnection(url);

JDBC 4.0, 4.1, and 4.2 Exceptions

Exceptions created by the connector generate a SQLException by default. To
generate an exception specific to JDBC 4.0, 4.1, or 4.2, specify the exception type
when calling createGeneralException() as shown in the following example:

ULDriver.s_ULMessages.createGeneralException
(DSIMessageKey.NOT_IMPLEMENTED.name(),
ExceptionType.INTEGRITY_CONSTRAINT_VIOLATION);

Pooled Connections

A pooled connection can be created by calling
JDBCObjectFactory::createPooledConnection(). If any specific behaviour
is required, a connector can optionally override createPooledConnection() to
return a subclass of PooledConnection. The three classes provided by Simba SDK
for the respective JDBC versions each return the appropriate version of

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
125

API Overview

http://www.magnitude.com/

‘SPooledConnection’ by default. For example,
JDBC4ObjectFactory::createPooledConnection() returns an
S4PooledConnection as shown in the following example:

/**
* Attempts to establish a physical database connection

that can be used as a pooled connection.
* @param connection The connection to use to create the
* <code>PooledConnection</code>.
* @return A <code>PooledConnection</code> object that is

a physical connection to the database that this
<code>ConnectionPoolDataSource</code> object represents.

* @throws SQLException If a database access error
occurs.
*/
protected PooledConnection createPooledConnection(SConnection
connection) throws SQLException
{

return new S4PooledConnection(connection);
}

Setting and Initializing Client Information

If a connector uses non-standard client info properties, both the initialization (e.g.
loading) and the setting of these properties must be handled by the connector’s
connection class. These tasks are handled in the loadClientInfoProperties()
andsetClientInfoProperty()methods of the connection as shown in the
following example from JavaUltraLight:

private void loadClientInfoProperties() throws ErrorException
{

// TODO #XX: Define your custom client info
properties.
// Standard client info properties are Application_
name, Client_user and
// client_hostname.
// Other client info properties have to be defined
here
ClientInfoData fakeCustomCLientInfo = new
ClientInfoData(
ULClientInfoPropertyKey.UL_CUSTOM_CLIENT_INFO,

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
126

API Overview

http://www.magnitude.com/

25,
"FakeCustomClientInfoForUltralight",
"Just a fake client info property to show how to
define them.");
setClientInfoProperty(fakeCustomCLientInfo);

}
public void setClientInfoProperty(String propName, String
propValue)throws ClientInfoException
{

// Check that the property name is valid and store
the new property
// values.
super.setClientInfoProperty(propName, propValue);
// TODO: Implements the wanted behaviour
// Usually the connector stores the value specified
in a suitable location
// in the database.
// For example in a special register, session
parameter, or system table
// column.
LogUtilities.logInfo(
String.format("Property {0} has now the value {1}",
propName,
propValue), m_log);

}

Handling Deregistration

JDBC 4.2 introduced the new DriverAction interface allowing JDBC connectors to
be notified when they are being deregistered by the JDBC DriverManager.
Implementing this interface allows connectors to handle the notification and perform
clean up tasks such releasing resources. Note that the implementation should not
perform the deregistration, but rather, perform any clean up required while the
connector is being deregistered by the DriverManager.

Simba SDK 10.3 exposes this notification via the IDriver interface and a default
implementation is provided in the DSIDriver class which does nothing. If you need to
handle the deregisration event to perform clean up tasks, implement the deregister
()method in your DSIDriver-derived class.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
127

API Overview

http://www.magnitude.com/

Related Topics

API Overview

Lifecycle of DSI Objects

Sample Connectors and Projects

JavaUltralight Sample Connector

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
128

API Overview

http://www.magnitude.com/

Data Types

The Simba SDK provides a data type to handle each of the types in the SQL
specification. This section lists the types for each SDK, and includes instructions on
how to convert the types from your data store into the Simba SDK data types.

In the C++ SDK, you can also create your own custom C and SQL data types.

SQL Data Types in the C++ SDK

SqlData objects represent the SQL types and encapsulate the data in a buffer. When
you have a SqlData object and would like to know what data type it is representing,
you can use GetMetadata()->GetSqlType() to retrieve the associated SQL_
[TYPE] type. For more information, see the file SqlData.h.

Fixed Length Types

The structures used to store the fixed-length data types represented by SqlData
objects are listed below:

SQL Type Simba SDK Data Type

SQL_BIT simba_uint8

SQL_BIGINT
(signed) simba_int64

SQL_BIGINT
(unsigned) simba_uint64

SQL_DATE TDWDate

SQL_DECIMAL TDWExactNumericType

SQL_DOUBLE simba_double64

SQL_FLOAT simba_double64

SQL_GUID TDWGuid

SQL_INTEGER
(signed) simba_int32

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
129

Data Types

http://www.magnitude.com/

SQL Type Simba SDK Data Type

SQL_INTEGER
(unsigned) simba_uint32

SQL_
INTERVAL_
DAY

TDWSingleFieldInterval

SQL_
INTERVAL_
DAY_TO_
HOUR

TDWDayHourInterval

SQL_
INTERVAL_
DAY_TO_
MINUTE

TDWDayMinuteInterval

SQL_
INTERVAL_
DAY_TO_
SECOND

TDWDaySecondInterval

SQL_
INTERVAL_
HOUR

TDWSingleFieldInterval

SQL_
INTERVAL_
HOUR_TO_
MINUTE

TDWHourMinuteInterval

SQL_
INTERVAL_
HOUR_TO_
SECOND

TDWHourSecondInterval

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
130

Data Types

http://www.magnitude.com/

SQL Type Simba SDK Data Type

SQL_
INTERVAL_
MINUTE

TDWSingleFieldInterval

SQL_
INTERVAL_
MINUTE_
SECOND

TDWMinuteSecondInterval

SQL_
INTERVAL_
MONTH

TDWSingleFieldInterval

SQL_
INTERVAL_
SECOND

TDWSecondInterval

SQL_
INTERVAL_
YEAR

TDWSingleFieldInterval

SQL_
INTERVAL_
YEAR_TO_
MONTH

TDWYearMonthInterval

SQL_
NUMERIC TDWExactNumericType

SQL_REAL simba_double32

SQL_
SMALLINT
(signed)

simba_int16

SQL_
SMALLINT
(unsigned)

simba_uint16

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
131

Data Types

http://www.magnitude.com/

SQL Type Simba SDK Data Type

SQL_TIME TDWTime

SQL_
TIMESTAMP TDWTimestamp

SQL_TINYINT
(signed) simba_int8

SQL_TINYINT
(unsigned) simba_uint8

SQL_TYPE_
DATE TDWDate

SQL_TYPE_
TIME TDWTime

SQL_TYPE_
TIMESTAMP TDWTimestamp

SQL_TYPE_
DATE TDWDate

SQL_TYPE_
TIME TDWTime

SQL_TYPE_
TIMESTAMP TDWTimestamp

Date, Time and DateTime Types

The associated SQL types for date, time, and datetime are listed below:

Type SQL Type for ODBC 3.x

date SQL_TYPE_DATE

time SQL_TYPE_TIME

datetime SQL_TYPE_TIMESTAMP

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
132

Data Types

http://www.magnitude.com/

Important:

SQL_DATE, SQL_TIME and SQL_TIMESTAMP are ODBC 2.x types, while
SQL_TYPE_DATE, SQL_TYPE_TIME, and SQL_TYPE_TIMESTAMP are
ODBC 3.x types. Since you are developing an ODBC 3.x connector, use the
ODBC 3.x types.

Example: Simple Fixed-Length Data

The SQLData for a SQL_INTEGER contains a simba_int32 type. This example
shows you how to copy your integer value into the simba_int32 type.

switch (in_data->GetMetadata()->GetSqlType())
{

case SQL_INTEGER:
{

simba_int32 value = 1234;
reinterpret_cast<simba_int32>(in_data->GetBuffer())

= value;
}

}

Variable Length Types

The following variable-length data types are stored in buffers and represented by
SqlData objects:

SQL Type Data Type

SQL_BINARY simba_byte*

SQL_CHAR simba_char*

SQL_LONGVARBINARY simba_byte*

SQL_LONGVARCHAR simba_char*

SQL_VARBINARY simba_byte*

SQL_VARCHAR simba_char*

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
133

Data Types

http://www.magnitude.com/

SQL Type Data Type

SQL_WCHAR simba_byte*

SQL_WLONGVARCHAR simba_byte*

SQL_WVARCHAR simba_byte*

Note:

You can use DSITypeUtilities::OutputWVarCharStringData and
OutputVarCharStringData for setting character data.

Example: Variable-Length Data

In the example below, the SQL_CHAR case shows how to use the type utilities, while
the SQL_VARCHAR case shows how to use memcpy.

Note:

l In your custom connector code, SQL_CHAR, SQL_VARCHAR and SQL_
LONGVARCHAR do not require separate cases.

l You custom connector code has other considerations, such as handling
offsets in the data.

switch (in_data->GetMetadata()->GetSqlType())
{

case SQL_CHAR:
{

simba_string stdString(“Hello”);
return DSITypeUtilities::OutputVarCharStringData(

&stdString,
in_data,
in_offset,
in_maxSize);

}
case SQL_VARCHAR:
{

simba_string stdString("Hello");
simba_uint32 size = stdString.size();

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
134

Data Types

http://www.magnitude.com/

in_data->SetLength(size);

memcpy(in_data->GetBuffer(), stdString, size);
return false;

}
}

SQL DataTypes in the Java SDK

This section explains the mapping between SQL types and the Simba SDK data types
for JDBC.

Note:

Because Java does not support unsigned types, SQL types that have both
unsigned and signed variations are mapped to the next largest data type.

SQL Type Data Type

SQL_BIGINT (signed) java.math.BigInteger

SQL_BIGINT (unsigned) java.math.BigInteger

SQL_BINARY byte[]

SQL_BIT java.lang.Boolean

SQL_CHAR java.lang.String

SQL_DECIMAL java.math.BigDecimal

SQL_DOUBLE java.lang.Double

SQL_FLOAT java.lang.Double

SQL_INTEGER (signed) java.lang.Long

SQL_INTEGER (unsigned) java.lang.Long

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
135

Data Types

http://www.magnitude.com/

SQL Type Data Type

SQL_INTERVAL_DAY com.simba.dsi.dataengine.utilities.DSITimeSpan

SQL_INTERVAL_DAY_
TO_HOUR com.simba.dsi.dataengine.utilities.DSITimeSpan

SQL_INTERVAL_DAY_
TO_MINUTE com.simba.dsi.dataengine.utilities.DSITimeSpan

SQL_INTERVAL_DAY_
TO_SECOND com.simba.dsi.dataengine.utilities.DSITimeSpan

SQL_INTERVAL_HOUR com.simba.dsi.dataengine.utilities.DSITimeSpan

SQL_INTERVAL_HOUR_
TO_MINUTE com.simba.dsi.dataengine.utilities.DSITimeSpan

SQL_INTERVAL_HOUR_
TO_SECOND com.simba.dsi.dataengine.utilities.DSITimeSpan

SQL_INTERVAL_MINUTE com.simba.dsi.dataengine.utilities.DSITimeSpan

SQL_INTERVAL_
MINUTE_SECOND com.simba.dsi.dataengine.utilities.DSITimeSpan

SQL_INTERVAL_MONTH com.simba.dsi.dataengine.utilities.DSIMonthSpan

SQL_INTERVAL_
SECOND com.simba.dsi.dataengine.utilities.DSITimeSpan

SQL_INTERVAL_YEAR com.simba.dsi.dataengine.utilities.DSIMonthSpan

SQL_INTERVAL_YEAR_
TO_MONTH com.simba.dsi.dataengine.utilities.DSIMonthSpan

SQL_LONGVARBINARY byte[]

SQL_LONGVARCHAR java.lang.String

SQL_NUMERIC java.math.BigDecimal

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
136

Data Types

http://www.magnitude.com/

SQL Type Data Type

SQL_REAL java.lang.Float

SQL_SMALLINT (signed) java.lang.Integer

SQL_SMALLINT
(unsigned) java.lang.Integer

SQL_TINYINT (signed) java.lang.Short

SQL_TINYINT (unsigned) java.lang.Short

SQL_TYPE_DATE java.sql.Date

SQL_TYPE_TIME java.sql.Time or
com.simba.dsi.dataengine.utilities.TimeTz

SQL_TYPE_TIMESTAMP java.sql.Timestamp or
com.simba.dsi.dataengine.utilities.TimestampTz

SQL_VARBINARY byte[]

SQL_VARCHAR java.lang.String

SQL_WCHAR java.lang.String

SQL_WLONGVARCHAR java.lang.String

SQL_WVARCHAR java.lang.String

Interval Conversions

Type Name SQL Type Parameters

INTERVAL DAY SQL_INTERVAL_DAY

Whole Day Precision

For example: INTERVAL DAY
(3)

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
137

Data Types

http://www.magnitude.com/

Type Name SQL Type Parameters

INTERVAL DAY TO
HOUR

SQL_INTERVAL_DAY_
TO_HOUR

Day Precision

For example: INTERVAL DAY
(2)

INTERVAL DAY TO
MINUTE

SQL_INTERVAL_DAY_
TO_MINUTE

Day Precision

For example: INTERVAL DAY
(2) TO MINUTE

INTERVAL DAY TO
SECOND

SQL_INTERVAL_DAY_
TO_SECOND

Day Precision, Fractional
Seconds Precision

For example: INTERVAL DAY
(2) TO SECOND (3)

INTERVAL HOUR SQL_INTERVAL_HOUR

Hour Precision

For example: INTERVAL
HOUR (3)

INTERVAL HOUR
TOMINUTE

SQL_INTERVAL_
HOUR_TO_MINUTE

Hour Precision

For example: INTERVAL
HOUR (2)

INTERVAL DAY TO
SECOND

SQL_INTERVAL_
HOUR_TO_SECOND

Hour Precision, Fractional
Seconds Precision

For example: INTERVAL
HOUR (3) TO SECOND (4)

INTERVAL MINUTE SQL_INTERVAL_
MINUTE

Minute Precision

For example: INTERVAL
MINUTE(2)

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
138

Data Types

http://www.magnitude.com/

Type Name SQL Type Parameters

INTERVAL MINUTE
SECOND

SQL_INTERVAL_
MINUTE_TO_SECOND

Minute Precision, Fractional
Seconds Precision

For example: INTERVAL
MINUTE (3) SECOND (4)

INTERVAL MONTH SQL_INTERVAL_
MONTH

Month Precision

For example: INTERVAL
MINUTE(2)

INTERVAL
SECOND

SQL_INTERVAL_
SECOND

Whole Seconds Precision,
Fractional Seconds Precision

For example: INTERVAL
SECOND (4,5)

INTERVAL YEAR SQL_INTERVAL_YEAR

Year Precision

For example: INTERVAL
YEAR(3)

INTERVAL YEAR
TOMONTH

SQL_INTERVAL_YEAR_
TO_MONTH

Year Precision

For example: INTERVAL
YEAR(2) TO MONTH)

Adding Custom SQLDataType

Using the C++ Simba SDK, you can add custom SQLDataTypes to your DSII. Each
custom data type that you add must be based on an existing data type. This allows
applications to handle your custom types transparently without requiring additional
logic.

The SQLite Sample driver demonstrates this to implement a Tweet custom data type
as a fixed length character field combined with a length field.

This functionality is available to connectors that use the SQL Engine, and to those that
do not.

Example:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
139

Data Types

http://www.magnitude.com/

You can add a type called Money that is based on Numeric, but is restricted to two
decimal places. It may also contain a custom conversion to character types that adds
the currency character.

Simba SDK uses the following classes to handle custom SQLDataTypes:

l UtilityFactory class create a SqlTypeMetadataFactory object, which
creates the metadata about the custom types.

l SqlDataFactory creates the object which represents the custom type.
l SqlConverterFactory converts the custom type to other data types.

This functionality is explained more in the instructions below.

To Add a Custom SQLDataType:

Note:

Corresponding class and function names from the SQLite sample driver are
noted in square brackets.

1. Modify your custom DSIIDriver [SLDriver] object to override and
implement the virtual method CreateUtilityFactory. In this method, return
a CustomerDSIIUtilityFactoryClass[SLUtilityFactory]. This class
provides the other factories that implement custom data type behavior.

2. Create a CustomerDSIIUtilityFactory [SLUtilityFactory] class,
which subclasses Simba::Support::UtilityFactory. This factory class
provides classes that handle the custom type metadata, data, and conversion of
the custom data types.
a. CreateSqlConverterFactory() creates a factory to create converters

that convert custom data types to other types.
b. CreateSqlDataFactory() creates a factory to create the actual

SqlData objects that represent the custom data types.
c. CreateSqlTypeMetadataFactory() creates a factory to create the

metadata about the custom data types.
3. Create a CustomerDSIISqlConverterFactory

[SLSqlConverterFactory] class which subclasses
Simba::Support::SqlConverterFactory, and override and implement
the following virtual methods:
a. CreateNewCustomSqlToCConverter() – Takes a SqlData and

SqlCData object representing the source and target types, and an
IWarningListener for posting any conversion warnings to. The
returned converter [SLCustomTypeTweetConverter] is responsible

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
140

Data Types

http://www.magnitude.com/

for converting from the source SQL data type to the target C data type.
b. CreateNewCustomCToSqlConverter() – Takes a SqlCData and

SqlData object representing the source and target types, and an
IWarningListener for posting any conversion warnings to. The
returned converter [SLCustomTypeTweetConverter] is responsible
for converting from the source C data type to the target SQL data type.

4. Create a CustomerDSIISqlDataFactory [SLSqlDataFactory] class
which subclasses Simba::Support::SqlDataFactory, and override and
implement the following virtual methods:
a. CreateNewCustomSqlData() – Takes a SqlTypeMetadata object

representing a SQL data type, which is used to determine what SqlData
object to create. Return a subclass of SqlData that represents the custom
type [SLTweetSqlData] if supported, otherwise return NULL.

5. Create a CustomerDSIISqlTypeMetadataFactory
[SLSqlTypeMetadataFactory] class which subclasses
Simba::Support::SqlTypeMetadataFactory, and override and
implement the following virtual methods:
a. CreateNewCustomSqlTypeMetadata() – Create a new

SqlTypeMetadata object that represents the custom data type specified.
The helper function SetupStandardMetadata is provided to set up the
standard type metadata for the standard SQLDataTypes. Return NULL if
the specified type is not supported.

b. SetCustomTypeDefaults() – Set the default metadata for the specified
data type on the specified SqlTypeMetadata object. This allows for
reuse of existing SqlTypeMetadata objects, rather than creating new
objects.

6. Ensure that the custom data types are reported in the metadata source for type
information. In particular, the DSI_USER_DATA_TYPE_COLUMN_TAG should
return the custom type identifier.

ODBC Custom C Data Types

Using the C++ Simba SDK, you can add custom C data types to your DSII. Each
custom data type that you add must be based on an existing data type. This allows
applications to handle your custom types transparently without requiring additional
logic.

This functionality is available to connectors that use the SQL Engine, and to those that
do not.

Simba SDK uses a UtilityFactory class to create a SqlCTypeMetadataFactory
object to create the metadata about the custom types, then use and a
SqlConverterFactory to convert the custom type to other data types.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
141

Data Types

http://www.magnitude.com/

The SQLite Sample driver demonstrates this by implementing a Tweet custom data
type as a fixed length character field combined with a length field.

To Add Custom C Data Types:

Note:

Corresponding class and function names from the SQLite sample driver are
noted in square brackets.

1. Create a header file to package with your ODBC connector. In this header file,
define the type ID for your custom C type, field ID’s for any custom metadata
fields, and the struct of your custom C data type. Note that field ID’s must start at
0x4100.

2. Modify your CustomerDSIIDriver [SLDriver] object to override and
implement the virtual method CreateUtilityFactory() to return a
CustomerDSIIUtilityFactoryClass [SLUtilityFactory]. This class
will provide the other factories that implement custom data type behavior.

3. Create a CustomerDSIIUtilityFactory [SLUtilityFactory] class
that subclasses Simba::Support::UtilityFactory . This factory class will
provide classes that handle the custom type metadata, data, and conversion of
the custom data types.
a. CreateSqlConverterFactory() creates a factory to create converters

that convert custom data types to other types.
b. CreateSqlCDataTypeUtilities() creates a utility class which

describes the custom C data types.
c. CreateSqlCTypeMetadataFactory() creates a factory to create the

metadata about the custom data types.
4. Create a CustomerDSIISqlConverterFactory

[SLSqlConverterFactory] class which subclasses
Simba::Support::SqlConverterFactory , and override and implement
the following virtual methods:
a. CanConvertCustomCTypeToSql() takes the ID of a custom C data

type and the TDWType enum of the target SQL type to convert to, and
determines if the type conversion can be performed.

b. CanConvertSqlToCustomCType() takes the TDWType enum of a SQL
data type and the ID of a custom C data type to convert to, and determines
if the type conversion can be performed.

c. CreateNewCustomSqlToCConverter() takes a SqlData and
SqlCData object representing the source and target types, and an
IWarningListener for posting any conversion warnings to. The returned

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
142

Data Types

http://www.magnitude.com/

converter [SLCustomTypeTweetConverter] is responsible for
converting from the source SQL data type to the target C data type.

d. CreateNewCustomCToSqlConverter() takes a SqlCData and
SqlData object representing the source and target types, and an
IWarningListener for posting any conversion warnings to. The returned
converter [SLCustomTypeTweetConverter] is responsible for
converting from the source C data type to the target SQL data type.

5. Create a CustomerDSIISqlCDataTypeUtilities
[SLCDataTypeUtilities] class which subclasses
SqlCDataTypeUtilities , and override and implement the following two
methods:
a. IsSupportedCustomType() takes in the ID of a type and determines if

it is a valid custom C data type.
b. GetStringForCType() takes is in the ID of a C data type and returns the

string representation of it.

Optionally override the following two methods if the custom C data type will
support custom metadata fields:
a. IsSupportedCustomMetadataField() takes in the ID of a field

identifier, along with the field’s indent and determines if the field identifier
and indent are valid.

b. GetCustomMetadataFieldType() takes in the field indent and returns
the data type that it represents.

Note:

When you override a function, your custom function should defer to the
implementation of the parent class when the ID of a non-custom type is
passed in. That is, your custom function should only handle your custom
types.

6. Create a CustomerDSIISqlCTypeMetadataFactory
[SLCTypeMetadataFactory] class which subclasses
Simba::Support::SqlCTypeMetadataFactory , and override and
implement the following virtual methods:
a. CreateNewCustomSqlCTypeMetadata() creates a new

SqlCTypeMetadata object that represents the custom C data type
specified.

b. ResetCustomTypeDefaults() sets the default values for the custom C
data type.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
143

Data Types

http://www.magnitude.com/

Optionally create CustomerSqlCTypeMetadata which subclasses
SqlCTypeMetadata if custom metadata fields are required for the custom C
data type. This object will then be constructed and returned by the
CreateNewCustomSqlCTypeMetadata()method.

In CustomerSqlCTypeMetadata , the SetField()/GetField()methods
must be overridden if there are custom metadata fields to set/get.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
144

Data Types

http://www.magnitude.com/

Specifications

This section lists the platform and compiler requirements for the Simba SDK. It also
lists the level of SQL conformance that is supported.

Supported Platforms

This section lists the platforms and compilers that are supported by the Simba SDK
version 10.3.0.

Hardware Requirements

On all supported platforms, the minimum hardware requirements are as follows:

l 8 GB of free disk space
l 1 GB RAM

Software Requirements

The following table lists the supported platforms and compilers:

Platform Versions Compilers Bits

Windows

10 & 11

Server 2016, 2019
& 2022

Visual Studio 2019 &
2022

.NET Standard 2.0

.NET Core

.NET Framework 3.5 &
4.6.2

32, 64

Linux

CentOS/Oracle
Linux/RHEL 7 & 8

Debian 10

SLES 12 & 15

Ubuntu 18.04 LTS, &
20.04 LTS

GNU GCC 4.8.5 & 5.5 32, 64

Linux ARM Debian 10 GNU GCC 8.3 32, 64

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
145

Specifications

http://www.magnitude.com/

Platform Versions Compilers Bits

macOS 11 (Apple M1) Xcode 12.4

64

64

64

Solaris
SPARC 10, 11 Oracle Solaris Studio

12.6 (Solaris 11) 32, 64

Solaris x86 11 Oracle Solaris Studio
12.6 (Solaris 11) 32, 64

7.2 XLClang C/C++ V16.1 32, 64

JDBC and JDK Support

The following list shows the JDK requirements for each version of JDBC:

l JDBC 4.2 used with JDK 1.8

Supported ODBC/SQL Functions

This section lists the ODBC-defined scalar functions that are supported by the SQL
Engine.

Explicit Covert functions

l CONVERT
l CAST

String Functions

l ASCII
l CHAR
l CONCAT
l INSERT
l LCASE
l LEFT
l LENGTH
l LOCATE
l LTRIM

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
146

Specifications

http://www.magnitude.com/

l REPEAT
l REPLACE
l RIGHT
l RTRIM
l SOUNDEX
l SPACE
l SUBSTRING
l UCASE

System Functions

l DATABASE
l IFNULL
l USER

Numeric Functions

l ABS
l ACOS
l ASIN
l ATAN
l ATAN2
l CEILING
l COS
l COT
l DEGREES
l EXP
l FLOOR
l LOG
l LOG10
l MOD
l PI
l POWER
l RADIANS
l RAND
l ROUND
l SIGN

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
147

Specifications

http://www.magnitude.com/

l SIN
l SQRT
l TAN
l TRUNCATE

Aggregate Functions

l AVG
l COUNT
l MAX
l MIN
l STDDEV
l STDDEV_POP
l SUM
l VAR
l VAR_POP

Time, Date, and Interval Functions

l CURDATE
l CURTIME
l CURRENT_DATE
l CURRENT_TIME
l CURRENT_TIME (time precision)
l CURRENT_TIMESTAMP
l CURRENT_TIMESTAMP (time precision)
l DAYNAME
l DAYOFMONTH
l DAYOFWEEK
l DAYOFYEAR
l HOUR
l MINUTE
l MONTH
l MONTHNAME
l NOW
l QUARTER
l SECOND

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
148

Specifications

http://www.magnitude.com/

l TIMESTAMPADD
l TIMESTAMPDIFF
l WEEK
l YEAR

Supported SQL Conformance Level

The Simba SDK supports the full core-level ODBC 3.80. It supports most of the Level 1
and Level 2 API.

The ODBC specification provides three levels of SQL grammar conformance:
Minimum, Core and Extended. Each higher level provides more fully implemented
data definition and data manipulation language support. The level of supported SQL
grammar is dependent on your SQL-enabled data source. At the very least, your SQL-
enabled data source must conform to the minimum SQL grammar defined by the
ODBC version 3.52 specification.

Conformance
Level Interfaces Conformance

Level Interfaces

Core SQLAllocHandle Core SQLGetInfo

Core SQLBindCol Core SQLGetStmtAttr

Core SQLBindParameter Core SQLGetTypeInfo

Core SQLCancel Core SQLNativeSql

Core SQLCloseCursor Core SQLNumParams

Core SQLColAttribute Core SQLNumResultCols

Core SQLColumns Core SQLParamData

Core SQLConnect Core SQLPrepare

Core SQLCopyDesc Core SQLPutData

Core SQLDescribeCol Core SQLRowCount

Core SQLDisconnect Core SQLSetConnectAttr

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
149

Specifications

http://www.magnitude.com/

Conformance
Level Interfaces Conformance

Level Interfaces

Core SQLDriverconnect Core SQLSetCursorName

Core SQLEndTran Core SQLSetDescField

Core SQLExecDirect Core SQLSetDescRec

Core SQLExecute Core SQLSetEnvAttr

Core SQLFetch Core SQLSetStmtAttr

Core SQLFetchScroll Core SQLSpecialColumns

Core SQLFreeHandle Core SQLStatistics

Core SQLFreeStmt Core SQLTables

Core SQLGetConnectAttr Level 1 SQLBrowseConnect

Core SQLGetCursorName Level 1 SQLMoreResults

Core SQLGetData Level 1 SQLPrimaryKeys

Core SQLGetDescField Level 1 SQLProcedureColumn
s

Core SQLGetDescRec Level 1 SQLProcedures

Core SQLGetDiagField Level 2 SQLColumnPrivileges

Core SQLGetDiagRec Level 2 SQLDescribeParam

Core SQLGetEnvAttr Level 2 SQLForeignKeys

Core SQLGetFunctions Level 2 SQLTablePrivileges

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
150

Specifications

http://www.magnitude.com/

Methods

The following section contains guidelines and considerations for implementing specific
methods in your connectors.

IStatement::ExecuteBatch()

This method is used to execute a set of statements in a batch.

Note:

This method can only be used to execute a statement batch coming from a
JDBC client. See the documentation for Java's
java.sql.Statement#executeBatch() for more information.

The statements in in_statements are not already converted to the underlying datas
source's native syntax. If the IDriver property DSI_DRIVER_NATIVE_SQL_BEFORE_
PREPARE is set to DSI_PROP_TRUE, the default implementation of this method
transforms the statements with IConnection::ToNativeSql().

All statements in in_statements should return a single rowcount result (no result sets).

The DSI_CONN_STOP_ON_ERROR connection property should be respected.

By default, the implementation runs according to the following logic:

Note:

This is not functioning code.

BatchResult res = new BatchResult();
for (stmt : in_statement)

{
try
{

res.AddRowCount(Execute(stmt));

}
catch (...)
{

res.AddError(GetCurrentException());

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
151

Methods

http://www.magnitude.com/

if (StopOnError)
break;

}

}
return res;

Where Execute(stmt) calls IStatement::CreateDataEngine(), uses it to
execute the statement via the query executor returned by IDataEngine::Prepare
(), and then destroys the query executor and data engine. If the executed statement
returns multiple results, or a resultset, this is represented as an error in the returned
IBatchResult object.

Statements
@param in_statements

The list of SQL statements to execute as part of the batch.
@return

An IBatchResult object describing the results of the execution (OWN)
virtual Simba::DSI::IBatchResult* ExecuteBatch(const
std::vector<simba_wstring>& in_statements);

Exposes an iterator to the results of IStatement::ExecuteBatch().

Initially, this object is positioned before the first result, and may only be iterated over
once.

This object's results are sequential. The first result is for the first statement in the
batch, the next result is for the second statement, and so forth. There is at most 1
result per statement.

The function produces results for a contiguous prefix of the statements, and those
results are either a single rowcount or a set of errors. Depending on the structure of the
statements, this prefix may be the entirety of the set. No gaps occur in the results and,
if there are no errors, there are as many results in the object as there were statements
in the batch. If the DSII stops on errors within a batch (DSI_CONN_STOP_ON_ERROR is
set), then fewer objects than statements can occur. The JDBC specification states a
given data source must be consistent in this behavior, either always stopping on error
or never stopping. The SDK does not enforce this.

Result

Returns IBatchResult object. This object includes the following interface.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
152

Methods

http://www.magnitude.com/

IBatchResult() {}

Constructor
virtual ~IBatchResult() {}

Destructor
enum ResultType

Describes the state of this object.
ROWCOUNT_RESULT

Indicates this object is currently positioned on a rowcount result.
ERROR_RESULT

Indicates this object is currently positioned on an error result.
NO_MORE_RESULTS

Indicates this object has no more results.
virtual ResultType MoveNext() = 0;

Moves to the next result exposed by this object (if there are any). Returns NO_MORE_
RESULTS if there are no more results, otherwise returns ROWCOUNT_RESULT or
ERROR_RESULT to indicate the type of the current result.
virtual bool GetCurrentRowCount(simba_uint64& out_rowCount)
const = 0;

Gets the current rowcount result. If the rowcount was known, it is returned via the out
parameter out_rowCount.

Note:

This may only be called if the last call to MoveNext() returned
ROWCOUNT_RESULT.

virtual const std::vector<ErrorException>& GetCurrentErrors()
const = 0;

Gets any errors that occurred for the current result.

Note:

Will return an empty vector unless MoveNext() returned ERROR_
RESULT.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
153

Methods

http://www.magnitude.com/

Compiling Your Connector

The 5 Day Guides at http://www.simba.com/resources/sdk/documentation/ provide
step-by-step instructions on how to compile and build the debug version of each
sample connector. This section provides more details on the compile and build
process, and explains the available options.

For information on packaging your connector as a product for end customers, see
Packaging Your Connector.

Upgrading Your Makefile to 10.1

In the 10.1 release, the Simba SDK introduces a new, simplified makefile system
which is very different from the ones used in previous versions. This section explains
how to customize and upgrade the sample makefiles in SDK 10.1 for your own custom
ODBC connectors.

Updated Name and Location of Makefiles

This section explains the name and location of the new makefiles, including how to
invoke them when building your custom ODBC connector.

How to invoke the makefile

We recommend that you invoke the makefile using
[DriverFolder]/Source/mk.sh. This script invokes and passes along all the
arguments to the makefile, [DriverFolder]/Source/GNUmakefile.

Note:

We do not recommend using [DriverFolder]/Source/GNUmakefile
directly, because all object files will be generated directly under the source
directory.

The following table summarizes the differences in the makefiles between the 10.1 and
10.0 release.

10.1 10.0

How to invoke the makefile

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
154

Compiling Your Connector

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

10.1 10.0

From the [DriverFolder]/Source
folder, type:

./mk.sh

From the
[DriverFolder]/Makefile folder,
type:

make -f [DriverName].mak

Main entry makefile

[DriverFolder]/Source/GNUmakef
ile [DriverFolder]/Makefile/

[DriverName].mak

Supporting makefiles for each connector

The content of the supporting makefiles
for each connector is merged into the
entry makefile.

These makefiles are invoked by the
entry makefile:
[DriverFolder]/Source/Makefi
le

[DriverFolder]/Source/Makefi
le_FLAGS.mak

[DriverFolder]/Source/Makefi
le_SRCS.mak

Common makefiles shared by all connectors

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
155

Compiling Your Connector

http://www.magnitude.com/

10.1 10.0

These makefiles are invoked by the entry
makefile:
[SIMBAENGINE_
DIR]/Makefiles/kit.mk
[SIMBAENGINE_
DIR]/Makefiles/kit.sh

l Platform.mak, which was used
to obtain platform-dependent
information, has been replaced by
the new kit.sh script file.

l Settings_XXX.mak, Rule_
XXX.mak and Master_
Targets.mak have been merged
into the new kit.mk file.

These makefiles are invoked by the
entry makefile:
[SIMBAENGINE_
DIR]/Makefiles/Platform.mak
[SIMBAENGINE_
DIR]/Makefiles/Settings_
[PlatformName].mak
[SIMBAENGINE_
DIR]/Makefiles/Master_
Targets.mak
[SIMBAENGINE_
DIR]/Makefiles/Rules_
[PlatformOrCompilerName].mak

Customizing the Sample Makefiles

The main entry makefile is [DriverFolder]/Source/GNUmakefile. In most
cases, this is the only file that you need to modify for your custom ODBC connector.
This section includes the following steps:

Step 1: Modify the name and location of the generated binary files

Step 2: Add source files and specify where to find them

Step 3: Add Search Paths for .h files and other compiler/linker flags

Step 1: Modify the name and location of the generated binary files

1. Modify target.driver = libQuickstart${BITS}.${SO} and
target.server = QuickstartServer${BITS} to change the default file
name for the connector and server. Note the following:

l ${BITS} represents the bitness of the current product, typically 32 or 64
(for OSX, it could also be 3264).

l ${SO} is the default platform-dependendent extension name for shared
library. Typically this is dylib for OSX and so for other UNIX systems.

2. Optionally, update the location. By default, the final product is built under
[DriverFolder]/Bin/[PlatformName]/[ConfigurationMode]
[BitNess], for example [DriverFolder]/Bin/Linux_x86_
gcc/debug64. If this location needs to be changed, modify the DESTDIR.bin
variable.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
156

Compiling Your Connector

http://www.magnitude.com/

Example:

SDK 10.1 [DriverFolder]/Source/GNUmakefile
Define the product names
target.driver = libMyCustomDSII${BITS}.${SO}
target.server = MyCustomDSII${BITS}
#...
Change default install location
DESTDIR.bin = $./../MyDirectory/${PLATFORM}/${MODE}${BITS}

Comparing 10.0 and 10.1 variables for this step:

This table shows how the 10.1 variables in this step map to the 10.0 variables. In 10.0,
the variables are in [DriverFolder]/Source/Makefile.

Description Name in 10.1 Name in 10.0

name of connector target.driver TARGET_SO

name of server target.server TARGET_BIN

location of generated binary DESTDIR.bin TARGET_BIN(SO)_PATH

config mode (release/debug) MODE No equivalence

bitness (32/64/3264) BITS BITNESS

suffix of shared libs (so / dylib) SO SO_SUFFIX

In 10.0, [DriverFolder]/Source/Makefile uses TARGET_BIN and TARGET_SO
to define binary file names. As well, destination directories are specified by TARGET_
BIN_PATH and TARGET_SO_PATH, as shown in the following example:

Example:

SDK 10.0 [DriverFolder]/Source/Makefile
PROJECT = MyCustomDSII
MAKEFILE_PATH = ../Makefiles
ifeq ($(BUILDSERVER),exe)
TARGET_BIN_PATH = ../Bin/$(PLATFORM)
TARGET_BIN = $(TARGET_BIN_PATH)/$(PROJECT)_server_<TARGET>
else

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
157

Compiling Your Connector

http://www.magnitude.com/

TARGET_SO_PATH = ../Bin/$(PLATFORM)
TARGET_SO = $(TARGET_SO_PATH)/lib$(PROJECT)_<TARGET>.$(SO_
SUFFIX)
endif
#...

Note:

In 10.0, the _<TARGET> suffix in TARGET_BIN(SO) is not a variable. Instead,
this is a special string that was replaced by either a _Debug suffix or an empty
string (depending on the config mode) in the master makefiles provided under
SIMBAENGINE_DIR. By default, both debug and release connectors were
generated into the same folder, and relied on suffixes in filenames to
differentiate release and debug builds.

In 10.1, binary files do not have a release or debug suffix in their name.
Instead, release and debug builds are put under different folders.

Step 2: Add source files and specify where to find them

1. Modify the file names. To do this, modify the following line to list your own source
files:
${target}: Main_Unix.o QSConnection.o QSDataEngine.o...

Note:

This list actually contains object files, so they should all have .o
extension, rather than their original .cpp extension names. As well, you
do not need to include the paths to the source files.

2. Modify the target-specific files. If some source files should only be included when
the DSII is built as a server, then you must add these files to a
${target.server}: ... dependency list, instead of the common object file
list ${target}: ...; As well, when the DSII is build as a connector (a shared
library), these files should be added to ${target.driver}: ...

3. Modify the file paths. To do this modify the following line to include all directories
that contain source files for the connector:

drvsrcdirs = $./Common $./Core $./DataEngine
$./DataEngine/Metadata

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
158

Compiling Your Connector

http://www.magnitude.com/

Note:

The symbol $. is a variable defined in kit.mk that represents the full
path of the directory where GNUmakefile is located, for example
[DriverFolder]/Source/. We recommend using this variable
instead of using [DriverFolder]/Source/.

Example:

Suppose the source files of the MyCustomDSII connector are laid out in the
following folder hierarchy:
Source
--/MySourceDir1
----MyCommonSource1.cpp # Common source files for both
connector and server
----MyCommonSource2.cpp
----MyDriverSpecificSource1.cpp # Connector specific
source file.
----MyCommonSource1.h # Common header files
----MyCommonSource2.h
----MyDriverSpecificSource1.h # Connector specific header
file.
--/MyFolder2
----MyCommonSource3.cpp
----MyServerSpecificSource1.cpp # Server specific source
file
----MyCommonSource3.h
----MyServerSpecificSource1.h # Server specific header
file
--/MyIncludeDir1
----MyOtherInclude1.h
--/MyIncludeDir2
----MyOtherInclude2.h

In this case, the filename and path lists should be configured as follows:

makefile # SDK 10.1 [DriverFolder]/Source/GNUmakefile
#... ### Specify directories to all folders that contain
source files for this connector drvsrcdirs =
$./MySourceDir1 $./MySourceDir2

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
159

Compiling Your Connector

http://www.magnitude.com/

4. Add the source file specific to "connector". For example:
${target.driver} : MyDriverSpecificSource1.o
${target.driver} : LDLIBS += $(call Mutual, ${CORESDK.a}
${SQLENGINE.a} ${ODBCSDK.a}) #...

5. Add source file specific to "server". For example:
${target.server} : MyServerSpecificSource1.o
${target.server} : CPPFLAGS += ${SERVERSDK_CPPFLAGS} #...

6. Modify source file list shared by both "connector" and "server". For example:
${target} : MyCommonSource1.o MyCommonSource2.o
MyCommonSource3.o #...

Comparing 10.0 and 10.1 variables:

The 10.1 variables involved in this step corresponds to variables in
[DriverFolder]/Source/Makefile_SRCS.mak in 10.0:

Description Name in 10.1 Name in 10.0

list of files listed directly in target rules as .o COMMON_SRCS

list of directories drvsrcdirs COMMON_SRCS

In 10.0, the list of source files, along with their paths, are specified by the COMMON_
SRCS variable in [DriverFolder]/Source/Makefile_SRCS.mak.

Example:

SDK 10.0 [DriverFolder]/Source/Makefile_FLAGS.mak
Common Sources used to build this project.
COMMON_SRCS = \
Common/QSTableMetadataFile.cpp \
Common/TabbedUnicodeFileReader.cpp \
Core/QSConnection.cpp \
Core/QSDriver.cpp \
Core/QSEnvironment.cpp \
Core/QSStatement.cpp \
DataEngine/QSDataEngine.cpp \
DataEngine/QSMetadataHelper.cpp \
DataEngine/QSTable.cpp \
DataEngine/QSTypeInfoMetadataSource.cpp

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
160

Compiling Your Connector

http://www.magnitude.com/

Step 3: Add Search Paths for .h files and other compiler/linker flags

1. Add search paths for headers. To do this, modify the following line to include
your own search directories for header files:
${target} : CPPFLAGS += $(addprefix -I, $. ${drvsrcdirs}
$(patsubst %,%/Include, ${drvsrcdirs}) $./Setup)

In this sample makefile, all directories listed in drvsrcdirs, and an Include
directory under each of those directories are automatically added as search
directories. You may append additional directories if they are not already in this
default list.

2. Add or modify other compiler and preprocessor flags other than the header file
search paths. To do this, add or modify existing target dependency lists that
contains ${target}: CXXFLAGS+= and ${target}: CPPFLAGS+=...
respectively.

3. Modify the linker flags. To add or modify linker flags and thirdparty libraries to be
linked, add or modify existing target dependency lists that contains ${target}:
LDFLAGS+= and ${target}: LDLIBS+=..., respectively.

4. Modify the target specific flags. If a flag should be added when building
connector but not server (or the other way around), then it should be listed under
${target.driver} or ${target.server}, instead of the common
${target}. For example, ${target.server}: LDFLAGS+=...means this
LDFLAGS list only applies when building a server.

5. Modify the config mode specific flags. If a flag should be added only for either
"release" or "debug", but not both, then users can append a .release or
.debug suffix to the corresponding XXXFLAGS variable to allow such config
mode specific flags. For example, CXXFLAGS.release += -myflag1
indicates -myflag1 will only be added to CXXFLAGS in release mode.
Similarly, CPPFLAGS.debug += -DMY_MACRO and LDFLAGS.debug += -
LMySearchPath indicates -DMY_MACRO and -LMySearchPath will only be
added to CPPFLAGS and LDFLAGS in debug mode.

For more information on implicit variables CXXFLAGS, CPPFLAGS, LDFLAGS,
LDLIBS used in GNUmake, see the GNUmake documentation at
https://www.gnu.org/software/make/manual/html_node/Implicit-Variables.html.

Example:

SDK 10.1 [DriverFolder]/Source/GNUmakefile`
Add a flag only for connector
#...
${target.driver} : CPPFLAGS += -DMY_DRIVER_MACRO
Add preprocessor flags only for connector in debug mode

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
161

Compiling Your Connector

https://www.gnu.org/software/make/manual/html_node/Implicit-Variables.html
http://www.magnitude.com/

${target.driver} : LDFLAGS.debug += -LMyLibSearchPath_Driver_
Debug/
Add linker flag only for connector in release mode
${target.driver} : LDFLAGS.release += -LMyLibSearchPath_
Driver_Release/
Add preprocessor flags only for server in release mode
${target.server} : LDFLAGS.release += -LMyLibSearchPath_
Server_Release/
Add a CXXFLAG for both connector and server in all config
modes
${target} : CXXFLAGS += -Weffc++
Add a CXXFLAG for both connector and server only in debug
mode
${target} : CPPFLAGS += -DMY_COMMON_MACRO
Add common search path
${target} : CPPFLAGS += $(addprefix -I, $. ${drvsrcdirs}
$./MyIncludeDir1 $./MyIncludeDir2)
#...

Comparing 10.0 and 10.1 variables:

The 10.1 variables involved in this step corresponds to variables in
[DriverFolder]/Source/Makefile_FLAGS.mak in 10.0:

Description Name in 10.1 Name in 10.0

list of header search paths CPPFLAGS COMMON_CFLAGS

preprocessor flags CPPFLAGS COMMON_CFLAGS

compiler flags CFLAGS, CXXFLAGS
CFLAGS

CXXFLAGSCFLAGS

linker flags LDFLAGS
BIN_LDFLAGS(_DEBUG)

SO_LDFLAGS(_DEBUG)

In 10.0, compiler and preprocessor flags that are common to all config mode
(release/debug) and target type (connector/server) are added to COMMON_CFLAGS in
[DriverFolder]/Source/Makefile_FLAGS.mak. As well, COMMON_CFLAGS are

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
162

Compiling Your Connector

http://www.magnitude.com/

always added into the implicit CLFAGS variable. Target-type or config-mode specific
flags are conditionally appended to CFLAGS using if-else blocks.

Also in 10.0, linker flags that are common to all config mode and target type are added
to COMMON_LDFLAGS. There are four other variables that represent the different
combinations of target-type and config-mode specific flags: BIN_LDFLAGS, BIN_
LDFLAGS_DEBUG, SO_LDFLAGS and SO_LDFLAGS_DEBUG . In 10.1, the target-type
specificity is represented as target-specific rules such as ${target.driver}:
LDFLAGS +=..., and the config-mode specificity is represented with a release or
debug suffix, such as ${target.server}: LDFLAGS.release +=....

Example

This example shows a 10.0 [DriverFolder]/Source/Makefile_FLAGS.mak
file that is roughly equivalent to the 10.1 GNUmakefile example above.
SDK 10.0 [DriverFolder]/Source/Makefile_FLAGS.mak
Common compiler and preprocessor flags
COMMON_CFLAGS = $(DMFLAGS) \
-I./MySourceDir1 \
-I./MySourceDir2 \
-I./MyIncludeDir1 \
-I./MyIncludeDir2 \
-DMY_COMMON_MACRO \
-Weffc++
ifeq ($(BUILDSERVER),exe)
Add conditional preprocessor flags for server
CFLAGS = $(COMMON_CFLAGS)
else
CFLAGS = $(COMMON_CFLAGS) -DMY_DRIVER_MACRO
endif
Define the common linker flags
COMMON_LDFLAGS = ...
#...
ifeq ($(BUILDSERVER),exe)
Config-mode specific linker flags for server
BIN_LDFLAGS = $(COMMON_LDFLAGS) -LMyLibSearchPath_Server_
Release/
BIN_LDFLAGS_DEBUG = $(COMMON_LDFLAGS)
else
Config-mode specific linker flags for connector
SO_LDFLAGS = $(COMMON_LDFLAGS) -LMyLibSearchPath_Driver_
Release/

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
163

Compiling Your Connector

http://www.magnitude.com/

SO_LDFLAGS_DEBUG = $(COMMON_LDFLAGS) -LMyLibSearchPath_
Driver_Debug/

Example Customized Makefile

This example shows a customized GNUmakefile that incorporates the modifications
described in this section. All modifications are preceded with a ### comment line.

Makefile for MyCustomDSII
#--------------- Target Definition
buildtype = $(if ${BUILDSERVER},server,connector)
target = ${target.${buildtype}}
Change the product names
target.driver = libMyCustomDSII${BITS}.${SO}
target.server = MyCustomDSIIServer${BITS}
Specify directories to all folders that contain source
files for this connector
drvsrcdirs = $./MySourceDir1 $./MySourceDir2
#----------------
.DEFAULT_GOAL := install
clean += ${target.driver} ${target.server}
bin.install : ${target}
Change default install location
DESTDIR.bin = $./../MyDirectory/${MODE}${BITS}
#---------------- Target dependencies.
Add source file specific to "connector"
${target.driver} : MyDriverSpecificSource1.o
Add a flag only for connector
${target.driver} : CPPFLAGS += -DMY_DRIVER_MACRO
Add a flag only for connector in debug
${target.driver} : CPPFLAGS.debug -DMY_DRIVER_DEBUG_MACRO
Add preprocessor flags only for connector in debug mode
${target.driver} : LDFLAGS.debug += -LMyLibSearchPath_Driver_
Debug/
Add linker flag only for connector in release mode
${target.driver} : LDFLAGS.release += -LMyLibSearchPath_
Driver_Release/
${target.driver} : LDLIBS += $(call Mutual, ${CORESDK.a}
${SQLENGINE.a} ${ODBCSDK.a})
${target.driver} : LDFLAGS += $(call LD.soname,$@)
${target.driver} : LDFLAGS += ${LD.exports}
Add source file specific to "server"

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
164

Compiling Your Connector

http://www.magnitude.com/

${target.server} : MyServerSpecificSource1.o
Add preprocessor flags only for server in release mode
${target.server} : LDFLAGS.release += -LMyLibSearchPath_
Server_Release/
Add preprocessor flags only for server in debug mode
${target.server} : LDFLAGS.release += -LMyLibSearchPath_
Server_Debug/
Add a third party library only for server
${target.server} : LDLIBS += -mythirdpartylib
Add release-specific flags linker flag
${target.driver} : LDFLAGS.release += -lmy_release_lib
${target.server} : CPPFLAGS += ${SERVERSDK_CPPFLAGS}
${target.server} : LDLIBS += $(call Mutual, ${CORESDK.a}
${SQLENGINE.a} ${SERVERSDK.a})
${target.server} : LDLIBS += ${OPENSSL_LDLIBS}
${target.server} :; ${LINK.o} -o $@ $^ ${LDLIBS}
Modify source file list shared by both "connector" and
"server"
${target} : MyCommonSource1.o MyCommonSource2.o
MyCommonSource3.o
Add a CXXFLAG for both connector and server in all config
modes
${target} : CXXFLAGS += -Weffc++
Add a CXXFLAG for both connector and server only in debug
mode
${target} : CPPFLAGS.debug += -DMY_COMMON_DEBUG_MACRO
Remove some default search paths and add user search
paths
${target} : CPPFLAGS += $(addprefix -I, $. ${drvsrcdirs}
$./MyIncludeDir1 $./MyIncludeDir2)
${target} : CPPFLAGS += ${CORESDK_CPPFLAGS} ${SQLENGINE_
CPPFLAGS} ${EXPAT_FLAGS}
${target} : LDLIBS += ${ICU_LDLIBS}
#--- Define search paths
vpath %.cpp ${drvsrcdirs}
vpath %.mm ${drvsrcdirs}

C++ on Windows

This section explains the different settings that are available on the Project Properties
page in Microsoft Visual Studio. For a full listing of all compiler options, see the
Microsoft MSDN documentation.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
165

Compiling Your Connector

http://www.magnitude.com/

You can use the sample projects from the 5 Day Guides as an example of how to build
your own custom connector. For a step-by-step example on how to build the sample
projects, see the 5 Day Guides at
http://www.simba.com/resources/sdk/documentation/.

Build as an ODBC Connector (a DLL) for Local Connections

The sample connectors discussed in the Build a C++ Connector in 5 Days documents
are set up to build as Windows DLLs. To build your own connector as a Windows DLL,
use the following settings:

1. Set configuration type to Dynamic Library (.dll):

Select Configuration Properties -> General -> Configuration Type.
2. Link against SimbaODBC.lib. Choose the correct version of the library for

release/debug, and whether MTDLL is used or not.

Select Configuration Properties -> Linker -> Input -> Additional
Dependencies.

3. Set the module definition file to Exports.def included in all sample
connectors:

Select Configuration Properties -> Linker -> Input Module Definition File.
4. Set the output file to a DLL name:

Select Configuration Properties -> Linker -> General -> Output File.
5. Include the DSI and Support include paths:

Select Configuration Properties -> C/C++ -> General -> Additional Include
Directories:

l $(SIMBAENGINE_DIR)\Include\DSI

l $(SIMBAENGINE_DIR)\Include\DSI\Client

l $(SIMBAENGINE_DIR)\Include\Support

l $(SIMBAENGINE_DIR)\Include\Support\Exceptions

l $(SIMBAENGINE_DIR)\Include\Support\TypedDataWrapper

Note:

If your custom connector uses the SQL Engine, see Build with the SQL Engine
for additional settings.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
166

Compiling Your Connector

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

Build as a SimbaServer (an EXE) for Remote Connections

To build a connector as a stand-alone SimbaServer executable, use the following
settings:

1. Set configuration type to Application (.exe):

Select Configuration Properties -> General -> Configuration Type
2. Link against SimbaServer.lib. Choose the correct version of the library for

release/debug, and whether MTDLL is used or not.

Select Configuration Properties -> Linker -> Input -> Additional
Dependencies.

For more information on these settings, see Run-time library options.
3. Unset the module definition file:

Select Configuration Properties -> Linker -> Input-> Module Definition File.
4. Set output file to an EXE name.

Select Configuration Properties-> Linker -> General Output File.
5. Include the DSI and Support include paths:

 Select Configuration Properties -> C/C++ -> General -> Additional Include
Directories:

l $(SIMBAENGINE_DIR)\Include\DSI

l $(SIMBAENGINE_DIR)\Include\DSI\Client

l $(SIMBAENGINE_DIR)\Include\Support

l $(SIMBAENGINE_DIR)\Include\Support\Exceptions

l $(SIMBAENGINE_DIR)\Include\Support\TypedDataWrapper

Note:

If your custom connector uses the SQL Engine, see Build with the SQL Engine
for additional settings.

Build with the SQL Engine

If your custom connector uses the SQL engine, use the following setting in addition to
those described in Build as an ODBC Connector (a DLL) for Local Connections or
Build as a SimbaServer (an EXE) for Remote Connections.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
167

Compiling Your Connector

http://www.magnitude.com/

1. Link against SimbaEngine.lib:

Select Configuration Properties -> Linker -> Input -> Additional
Dependencies.

2. Include the SQLEngine include paths:

 Select Configuration Properties -> C/C++ -> General -> Additional Include
Directories:

l $(SIMBAENGINE_DIR)\Include\SQLEngine

l $(SIMBAENGINE_DIR)\Include\SQLEngine\AETree

l $(SIMBAENGINE_DIR)\Include\SQLEngine\DSIExt

Run-time library options

Each Simba library file has a Debug, Debug_MTDLL, Release and Release_MTDLL
version. You an choose to link against any of these versions. In order to successfully
link against your chosen version of the library, your project settings must match some
of the settings used to build the library:

Debug

The Debug version of the Simba libraries are the debug version that uses a statically
linked C++ runtime. To use this version of the library:

1. In Configuration Properties -> C/C++-> Preprocessor -> Preprocessor
Definitions, include _DEBUG.

2. In Configuration Properties -> C/C++ -> Code Generation -> Runtime Library,
select Multi-threaded Debug (/MTd).

Debug_MTDLL

The Debug_MTDLL version of the Simba libraries are the debug version that uses a
dynamically linked C++ runtime. To use this version of the library:

1. In Configuration Properties -> C/C++-> Preprocessor -> Preprocessor
Definitions, include _DEBUG.

2. In Configuration Properties -> C/C++ -> Code Generation -> Runtime Library,
select Multi-threaded Debug DLL (/MDd).

Release

The Release version of the Simba libraries are the release version that uses a
statically linked C++ runtime. To use this version of the library:

1. In Configuration Properties -> C/C++-> Preprocessor -> Preprocessor
Definitions, include _NDEBUG.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
168

Compiling Your Connector

http://www.magnitude.com/

2. In Configuration Properties -> C/C++ -> Code Generation -> Runtime Library,
select Multi-threaded(/MT).

Release_MTDLL

The Release_MTDLL version of the Simba libraries are the release version that uses
a dynamically linked C++ runtime. To use this version of the library:

1. In Configuration Properties -> C/C++-> Preprocessor -> Preprocessor
Definitions, include _NDEBUG.

2. In Configuration Properties -> C/C++ -> Code Generation -> Runtime Library,
select Multi-threaded DLL (/MD).

Character Set

In the Visual Studio “Configuration Properties” for your DSII project, on the “General”
property page, ensure that the “Character Set” property is set to “Use Unicode
Character Set”. This is the default setting used in the sample connector projects.

C# on Windows

This section explains the different settings that are available on the Project Properties
page in Microsoft Visual Studio. For a full listing of all compiler options, see the
Microsoft MSDN documentation.

As of Simba SDK 10.2.1, the Simba .NET components are packaged as NuGet
(.nupkg) files. You should configure your NuGet environment to add the Simba SDK
as a package source using this directory: [INSTALL_DIRECTORY]\Bin\Release.

In this section, anything referring to referencing the Simba.DotNetDSI,
Simba.DotNetDSIExt, and Simba.ADO.NET assemblies can be interpreted as
referencing the corresponding NuGet packages. When building for .NET Core or .NET
Standard, it is strongly encouraged to only use the NuGet packages instead of directly
referencing the assemblies.

Most people use the C# SDK to build an ADO.NET provider, but you can also use the
C# SDK to write your DSII and build the project as an ODBC connector. The connector
can be built to support either local or remote connections, with or without the SQL
Engine.

You can use the sample projects from the 5 Day Guides as an example of how to build
your own custom connector. For a step-by-step example on how to build the sample
projects, see the 5 Day Guides at
http://www.simba.com/resources/sdk/documentation/.

Most of the settings described in the section C++ on Windows also apply to C#, but
building C# uses a different project for the .Net DSII code.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
169

Compiling Your Connector

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

DotNetDSI and DSII

When writing a C# DSII, you must create a new Visual Studio project for a managed
C# class library that does not include any of the settings described for a C++ DSII. Add
the following to the project:

l If the DSII uses the Simba SQLEngine, add the Simba.DotNetDSI and
Simba.DotNetDSIExt assemblies.

l If the DSII does not use the Simba SQLEngine, add the Simba.DotNetDSI
assembly.

The base classes from which you derive to code your DSII are all defined in these
assemblies. These assemblies can be used for both 32-bit and 64-bit connector
development.

Note:

If you are using the CLIDSI, you must match the bitness of your compiled C#
DLL to the bitness of the CLIDSI library that is being used.

When using your provider, server, or ODBC connector, you must register this
assembly in the Global Assembly Cache (GAC) of Windows.

Simba.NET

In order to build a pure C# ADO.NET provider, you only need your DotNet DSII project
and the Simba.DotNetDSI and Simba.ADO.NET assemblies.

Note:

When building a pure C# ADO.NET provider, you cannot use the Simba
SQLEngine. To support this deployment scenario, use SimbaServer and the
ODBC client.

When using Simba.NET to create an ADO.NET provider, you must extend the
following additional abstract classes.

l SCommand

l SCommandBuilder

l SConnection

l SConnectionStringBuilder

l SDataAdapter

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
170

Compiling Your Connector

http://www.magnitude.com/

l SFactory

l SParameter

These are part of the Simba.ADO.NET assembly, not the normal DotNet DSI.

You must extend the SConnectionStringBuilder subclass and add any
additional properties that are needed to establish a connection to your provider. For
example, see the Simba DotNetUltralight sample described in the 5 Day Guides at
http://www.simba.com/resources/sdk/documentation/.

The rest of the classes that you extend do not typically need to be modified.

When using your provider, the Simba.DotNetDSI and Simba.ADO.NET assemblies
should be registered in the Global Assembly Cache (GAC) of Windows.

Build as an ODBC Connector (a DLL) for local connections

This section explains how to build an ODBC connector for local connections, with or
without the Simba SQLEngine. In addition to the DotNet DSII project, you must create
a CLIDSI project that provides the bridge between the native C++ Simba ODBC
libraries and your CustomerDotNetDSII.dll assembly:

1. Follow the instructions in Build with the SQL Engine , including all the specified
libraries.

2. Include the library CLIDSI_$(ConfigurationName).lib.

This library forms the bridge between the unmanaged and managed DSI
classes.

3. Enable Common Language Runtime Support (/clr) by selecting the following
option:

Configuration Properties -> General -> Common Language Runtime Support
4. Implement the factory function that constructs your IDriver object:

Simba::DotNetDSI::IDriver^ Simba::CLIDSI::LoadDriver()
{

return gcnew CustomerDotNetDSII::CustomerDSIIDriver();
}

The output of this project is your custom connector DLL, for example
CustomerCLIDSIDriver.dll. This is the actual ODBC connector which will load
your CustomerDotNetDSII.dll assembly.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
171

Compiling Your Connector

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

Build as a SimbaServer (an EXE) for Remote Connections

This section explains how to build an ODBC connector for remote connections, with or
without the Simba SQLEngine.

In addition to the DotNet DSII project, you must create a CLIDSI project that provides
the bridge between the native C++ Simba ODBC libraries and your
CustomerDotNetDSII.dll assembly:

1. Follow the instructions in Build with the SQL Engine, including all the specified
libraries.

2. Include the library CLIDSI_$(ConfigurationName).lib.

This library forms the bridge between the unmanaged and managed DSI
classes.

3. Enable Common Language Runtime Support (/clr) by selecting the following
option:

Configuration Properties -> General -> Common Language Runtime Support
4. Implement the factory function that constructs your IDriver object:

Simba::DotNetDSI::IDriver^ Simba::CLIDSI::LoadDriver()
{

return gcnew CustomerDotNetDSII::CustomerDSIIDriver();
}

The output of this project is your custom connector DLL, for example
CustomerCLIDSIDriver.dll. This is the actual ODBC connector which will load
your CustomerDotNetDSII.dll assembly.

C# on Linux, Unix, and macOS

Simba.NET may be used to build pure C# ADO.NET providers for anywhere that .NET
Core is available. All of the above in the Simba.NET section still applies.

CLIDSI cannot be used to build ODBC connectors for non-Windows platforms.

Java on Windows

This section explains how to build a connector written in Java on Windows platforms.

You can use the sample projects from the 5 Day Guides as an example of how to build
your own custom connector. For a step-by-step example on how to build the sample
projects, see the 5 Day Guides at
http://www.simba.com/resources/sdk/documentation/.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
172

Compiling Your Connector

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

Options for Writing a Connector in Java

As explained in Implementation Options , you can write a custom ODBC or JDBC
connector in Java using the following methods:

l Use Java to write a DSII for an ODBC connector, and connect it to the C++ SDK
using a JNI component.

This option can be implemented with or without the C++ Simba SQLEngine.
l Use Java to write a DSII for an JDBC connector.

This option can be implemented with or without the Java Simba SQLEngine.

The compilation instructions for these two methods are described below.

Build a Pure-Java JDBC Connector

This type of connector can optionally use the Java SQL Engine. You can use it with or
without the Java Simba SQLEngine.

Building a JDBC Connector for SQL-Capable Data Stores

The following steps describe how to build a pure-Java JDBC connector that does not
use the SQL Engine:

1. Ensure that the SimbaJDBC JAR file, located at [INSTALL_
DIRECTORY]\DataAccessComponents\Lib, is in the classpath.

2. Create your connector DSII JAR file.
3. No additional libraries need to be linked.

The JavaUltraLight sample connector shows how to implement and build this type of
connector.

Building with the Java Simba SQLEngine

To build a pure-Java JDBC connector that uses the Java SQL engine, follow the steps
in Building a JDBC Connector for SQL-Capable Data Stores above, and also include
the SimbaSQLEngine.jar in your build process.

The JavaQuickJson sample connector shows how to implement and build this type of
connector. In this sample connector, the ANT build script packages the pre-compiled
files with those of the DSII.

Build Java DSII for an ODBC Connector

This type of connector uses a JNI bridge to connect to the C++ API components. You
can use it with or without the C++ Simba SQLEngine.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
173

Compiling Your Connector

http://www.magnitude.com/

Building as an ODBC Connector (a DLL) for Local Connections

The following steps describe how to build an ODBC connector that doesn't use the
SQL Engine and is not built for client-server deployments:

1. Include the settings for C++ connectors described in C++ on Windows.
2. Include the additional directory for the JVM library that is under $(JAVA_

HOME)\lib:

Configuration Properties -> Linker -> General -> Additional Library Directories

Note:

JAVA_HOME is an environment variable that should refer to the 32-bit
Java installation directory when building the 32-bit ODBC connector or
the 64-bit Java installation directory when building the 64-bit ODBC
connector.

3. Link against SimbaJNIDSI_$(ConfigurationName).lib and jvm.lib:

Configuration Properties -> Linker -> Input -> Additional Dependencies

Set ConfigurationName to one of the following values: Debug, Debug_MTDLL,
Release or Release_MTDLL. For information on these options, see Run-time
library options.

4. Include the general and Java include paths:

Configuration Properties -> C/C++ -> General -> Additional Include
Directories:

l $(SIMBAENGINE_DIR)\Include\JNIDSI

l $(JAVA_HOME)\include

l $(JAVA_HOME)\include\win32

The sample connectors discussed in the document Build a Java ODBC Connector in 5
Days are configured to build as Windows DLL’s.

Building as a SimbaServer (an EXE) for Remote Connection

To build a connector as a stand-alone SimbaServer executable, follow the steps in
Building as an ODBC Connector (a DLL) for Local Connections with the additional C++
settings described in Build as a SimbaServer (an EXE) for Remote Connections.

Building with the C++ Simba SQLEngine

To build a Java ODBC connector that uses the C++ SQL engine, follow the steps in
Build as an ODBC Connector (a DLL) for Local Connections above with the additional

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
174

Compiling Your Connector

http://www.magnitude.com/

SQL Engine settings described in Build with the SQL Engine.

The JavaQuickstart sample connector shows how to implement and build this type of
connector.

C++ on Linux, Unix, and macOS

The Simba SDK include a sample makefile with each of the sample connector
projects. You can use this makefile to build the sample connector, then use it as a
template for creating a makefile for your custom connector.

Note:

We recommend that you use the script mk.sh in the Source directory of your
sample connector project. It is not recommended to use the makefile directly.

Build Configurations

The sample makefiles include targets for both debug and release versions of the
connectors and the SimbaServer. The output location, or file path, indicates the
bitness, compiler, and platform version. For example, when the debug version of the
Quickstart connector is build on a 64-bit Linux machine with the gcc compiler, the
resulting shared object is located in:
.../Bin/Linux_x86_gcc/debug64/libQuickstart64.so

Default Settings in the Sample Makefile

To help you compile and build the sample connectors on a variety of machines, the
sample shell script and sample makefiles automatically detect your machine's
operating system, bitness, and default compiler, then use the appropriate settings to
run the build. By default, the makefiles build a release version that is dynamically
linked to dependencies.

You can override these default settings by specifying them in the mk.sh command
line, or by setting them as environment variables.

Changing the version of XCode on macOS

By default, on macOS the sample makefile detects the highest available version of the
XCode compiler, and uses that to build the sample connectors. If you download a
different version of the Simba SDK, you must set the active developer directory to
match.

Example:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
175

Compiling Your Connector

http://www.magnitude.com/

Assume you have both XCode 6 and XCode 7 on your machine, and you download the
XCode 6 version of the Simba SDK. The sample makefile tries to use the XCode7
compiler, but this fails. Set the environment variable DEVELOPER_DIR to configure
the active developer directory:
export DEVELOPER_DIR=/Application/Xcode6.1.app

Overriding Default Settings

The following table describes the options that you can use to override the default
behaviour of the sample makefiles. Multiple options are allowed, for example:
./mk.sh MODE=debug BITS=32

Option Description

BUILDSERVER

Set to 1 to build a server (.exe) instead of a connector (.so or
.dylib). By default, a connector is built.

Example:
./mk.sh BUILDSERVER=1

CXX

On Solaris, specify the compiler to use. Allowed values are
the name of the compiler, for example g++, g++44, or g++59.

Example:
./mk.sh CXX=g++59

SDK_PLATFORM

Specifies the subpath to the dependencies. This value is
autodetected by default, but you can override it.

The path where the dependencies are installed contains
architecture information and the compiler version. For
example, the lCU libraries might be installed at
ThirdParty/icu/53.1/centos5/gcc4_4. The Simba
SDK autodetects this information to allow your connector to
use the correct dependencies. You can override this
information to specify dependencies in a different location.

Example:
./mk.sh SDK_PLATFORM=Darwin/xcode7_2

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
176

Compiling Your Connector

http://www.magnitude.com/

Option Description

MODE

Set to debug to build the debug version of the connector. By
default, the release version of the connector is built.

Example:
./mk.sh MODE=debug

BITS

Specifies the bitness of the connector you wish to build. By
default, the makefiles build a connector that matches the
bitness of your operating system, but you can override this
option. For example, when building on a 64-bit platform, you
can use this option to specify a 32-bit connector.

Allowed values are 32, 64, and 3264.

Use 3264 to indicate an OSX universal binary that combines
32 and 64 bit code.

Example:
./mk.sh BITS=32

ICU_STATIC

Set to 1 to statically link to the ICU library. By default, the
makefiles build a connector that dynamically links to the ICU
library.

Example:
./mk.sh ICU_STATIC=1

OPENSSL_
STATIC

Set to 1 to statically link to the OpenSSL library. By default,
the makefiles build a connector that dynamically links to the
OpenSS library.

Example:
./mk.sh ICU_STATIC=1

Build an ODBC Connector (a Shared Object) for Local Connections

This section describes the settings you can use to build your custom ODBC connector
for local connections (that is, not as a SimbaServer). You can build with or without the
Simba SQLEngine. This section references the core makefile for the sample
connectors, ${SIMBAENGINE_DIR}/Makefiles/kit.mk.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
177

Compiling Your Connector

http://www.magnitude.com/

Note:

For each of the steps below, be sure to include the correct libraries for the
compiler, bitness, and release/debug configuration.

1. Set the compiler and linker to build a shared object. The exact option depends on
the compiler.

2. Include the Simba Core SDK libraries, as specified by the variable CORESDK.a
in the file ${SIMBAENGINE_DIR}/Makefiles/kit.mk. Be sure to include the
correct libraries for the compiler, bitness, and release/debug configuration. For
example:

l libCore.a

l libSimbaDSI.a

l libSimbaSupport.a

3. Include the Simba ODBC libraries, as specified by the variable ODBCSDK.a. For
example:

l libSimbaODBC.a

4. If your connector uses the SQL Engine, include the SQL Engine libraries, as
specified by the variable SQLENGINE.a. For example:

l libAEProcessor.a

l libDSIExt.a

l libExecutor.a

l libParser.a

5. Include the Core SDK include paths, as specified by the variable CORESDK_
CPPFLAGS. For example:

l ${SIMBAENGINE_DIR}/Include/DSI

l ${SIMBAENGINE_DIR}/Include/DSIClient

l ${SIMBAENGINE_DIR}/Include/Support

l ${SIMBAENGINE_DIR}/Include/Support/Exceptions

l ${SIMBAENGINE_DIR}/Include/Support/TypedDataWrapper

l ${SIMBAENGINE_DIR}/ThirdParty/odbcheaders

6. Include the ICU include paths, as specified by the variable ICU_LDLIBS. The
path and file name contain version, bitness, and release/debug information. For
example:

l ${SIMBAENGINE_DIR}hirdParty/icu/53.1.x/Linux_x86_
gcc/release64/lib

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
178

Compiling Your Connector

http://www.magnitude.com/

7. If your connector uses the SQL Engine, include the SQL Engine and expat
include paths, as specified by the variables SQLENGINE_CPPFLAGS and
EXPAT_FLAGS in the kit.mk file. Note that the Expat directory contains a
version number. For example:

l ${SIMBAENGINE_DIR}/Include/SQLEngine

l ${SIMBAENGINE_DIR}/Include/SQLEngine/AETree

l ${SIMBAENGINE_DIR}/Include/SQLEngine/DSIExt

l ${SIMBAENGINE_DIR}/Include/ThirdParty/Expat/2.2.0

Build as a SimbaServer (an EXE) for Remote Connections

This section describes the settings you can use to build your custom ODBC connector
as a SimbaServer. You can build with or without the Simba SQLEngine. This section
references the core makefile for the sample connectors, ${SIMBAENGINE_
DIR}/Makefiles/kit.mk.

Note:

For each of the steps below, be sure to include the correct libraries for the
compiler, bitness, and release/debug configuration.

1. Set the compiler and linker to build an application (.exe). The exact option
depends on the compiler.

2. Include the Simba Core SDK libraries, as specified by the variable CORESDK.a
in the file ${SIMBAENGINE_DIR}/Makefiles/kit.mk. Be sure to include the
correct libraries for the compiler, bitness, and release/debug configuration. For
example:

l libCore.a

l libSimbaDSI.a

l libSimbaSupport.a

3. Include the Simba Server libraries, as specified by the variable SERVERSDK.a.
For example:

l libSimbaCSCommon.a

l libSimbaServer.a

l libSimbaServerMain.a

4. If your connector uses the SQL Engine, include the SQL Engine libraries, as
specified by the variable SQLENGINE.a. For example:

l libAEProcessor.a

l libDSIExt.a

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
179

Compiling Your Connector

http://www.magnitude.com/

l libExecutor.a

l libParser.a

5. Include the Core SDK include paths, as specified by the variable CORESDK_
CPPFLAGS. For example:

l ${SIMBAENGINE_DIR}/Include/DSI

l ${SIMBAENGINE_DIR}/Include/DSIClient

l ${SIMBAENGINE_DIR}/Include/Support

l ${SIMBAENGINE_DIR}/Include/Support/Exceptions

l ${SIMBAENGINE_DIR}/Include/Support/TypedDataWrapper

l ${SIMBAENGINE_DIR}/ThirdParty/odbcheaders

6. Include the Server SDK include paths, as specified by the variable SERVERSDK_
CPPFLAGS. For example:

l ${SIMBAENGINE_DIR}/Include/Server

7. Include the ICU include paths, as specified by the variable ICU_LDLIBS. The
path and file name contain version, bitness, and release/debug information. For
example:

l ${SIMBAENGINE_DIR}/ThirdParty/icu/53.1.x/Linux_x86_
gcc/release64/lib

8. Include the Open SLL include paths, as specified by the variable OPENSSL_
LDLIBS. The path and file name contain version, bitness, and release/debug
information. For example:

l ${SIMBAENGINE_DIR}/ThirdParty/openssl/1.1.0/Linux_x86_
gcc/release64/lib

9. If your connector uses the SQL Engine, include the SQL Engine and expat
include paths, as specified by the variables SQLENGINE_CPPFLAGS and
EXPAT_FLAGS in the kit.mk file. Note that the Expat directory contains a
version number. For example:

l ${SIMBAENGINE_DIR}/Include/SQLEngine

l ${SIMBAENGINE_DIR}/Include/SQLEngine/AETree

l ${SIMBAENGINE_DIR}/Include/SQLEngine/DSIExt

l ${SIMBAENGINE_DIR}/Include/ThirdParty/Expat/2.2.0

Related Topics

5 Day Guides at http://www.simba.com/resources/sdk/documentation/

SimbaClientServer User Guide at
http://www.simba.com/resources/sdk/documentation/

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
180

Compiling Your Connector

http://www.simba.com/resources/sdk/documentation/
http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

Productizing Your Connector

In order to package your custom connector as a product for end customers, you may
want to finish rebranding the configuration information and error messages. You also
need to include the required dependencies in the install package, and handle
configuration on the customer's machine during installation.

Packaging Your Connector

This section explains which files need to be included with your custom connector
package, and what configuration steps must be performed on the customer machine in
order for customers to install and use your custom connector.

The requirements for local connectors are included in this section. For client-server
connectors, see the SimbaClientServer User Guide at
http://www.simba.com/resources/sdk/documentation/.

C++ On Windows

This section explains how to package connectors written in C++ and built on Windows
platforms.

1. Include the connector DLL and any additional DLLs that you added.
2. Include the ICU DLLs from [INSTALL_

DIRECTORY]\DataAccessComponents\ThirdParty\icu\53.1.x\<
PLATFORM>\<CONFIGURATION>\lib\.

l For 32-bit connectors, include sbicudt53_32.dll, sbicuin53_
32.dll, and sbicuuc53_32.dll.

l Or, for 64-bit connectors, include sbicudt53_64.dll, sbicuin53_
64.dll, and sbicuuc53_64.dll.

3. Include the error message files from [INSTALL_
DIRECTORY]\DataAccessComponents\ErrorMessages. Include the
subdirectories for the languages that you want your connector to support.

4. Create the following key in the Windows registry:
l For 32-bit connectors on 32-bit machines, or 64-bit connectors on 64-bit
machines, create the key HKEY_LOCAL_
MACHINE\SOFTWARE\Simba\Quickstart\Driver, replacing Simba with
your company name and Quickstart with your connector name.

l For 32-bit connectors on 64-bit machines, create the key HKEY_LOCAL_
MACHINE\SOFTWARE\Wow6432Node\Simba\Quickstart\connector,
replacing Simba with your company name and Quickstart with your
connector name.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
181

Productizing Your Connector

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

Add the following entries:
l DriverManagerEncoding = UTF-16
l ErrorMessagesPath = <Path to the parent directory where error message
files are located>

l (OPTIONAL) LogLevel = 0
l (OPTIONAL) LogPath = <Path to directory to store the log files>

5. Create the following key in the Windows registry:
l For 32-bit connectors on 32-bit machines, or 64-bit connectors on 64-bit
machines, create the key HKEY_LOCAL_
MACHINE\SOFTWARE\ODBC\ODBCINST.INI\ODBC Drivers.

l For 32-bit connectors on 64-bit machines, create the key HKEY_LOCAL_
MACHINE\SOFTWARE\Wow6432Node\ODBC\ODBCINST.INI\ODBC
Drivers.

Add the following entry:
l <DRIVER_NAME>=Installed

6. Create the following key in the Windows registry:
l For 32-bit connectors on 32-bit machines, or 64-bit connectors on 64-bit
machines, create the key HKEY_LOCAL_
MACHINE\SOFTWARE\ODBC\ODBCINST.INI\QuickstartDSIIDriver,
replacing QuickstartDSIIDriver with the name of your connector.

l For 32-bit connectors on 64-bit machines, create the key HKEY_LOCAL_
MACHINE\SOFTWARE\Wow6432Node\ODBC\ODBCINST.INI\Quickst
artDSIIDrivers, replacing QuickstartDSIIDriver with the name of your
connector.

Add the following entries, ensuring you include the correct path for either the 32-
bit or the 64-bit connector:

l Driver=<Full path to the connector DLL>
l Description=<Brief description of your connector>
l Setup=<Full path to the 32-bit connector configuration dialog DLL>

For an explanation of the registry keys that are created for the sample connectors, see
Examine the Windows Registry and Update the Windows Registry in the 5 Day Guides
at http://www.simba.com/resources/sdk/documentation/.

C++ On Linux, Unix, and macOS

This section explains how to package drivers written in C++ and built on Linux, Unix
and macOS platforms.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
182

Productizing Your Connector

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

1. Include the connector shared object and any additional shared objects that you
added.

2. Include all ICU shared objects from [INSTALL_
DIRECTORY]/DataAccessComponents/ThirdParty/icu/53.1.x/<
PLATFORM>/<CONFIGURATION>/lib.

3. Include the error message files from [INSTALL_
DIRECTORY]/DataAccessComponents/ErrorMessages. Include the
subdirectories for the languages that you want your connector to support.

4. Add the following entries to your connector's .ini configuration file.
l DriverManagerEncoding=UTF-16 (or UTF-32, depending on the driver
manager being used)

l ErrorMessagesPath=<Path to the directory where error
message file is located>

l ODBCInstLib=<Full path to the Driver Manager’s
ODBCInst library>

l (OPTIONAL) LogLevel=0

l (OPTIONAL) LogPath=<Path to directory to store the log
files>

5. Add the following entries to .odbcinst.ini:
l <DRIVER_NAME>=Installed

l [<DRIVER_NAME>]

l Driver=<Full path to the connector shared library>

l Description=<Brief description of your connector>

For an explanation of the configuration files that are created for the sample
connectors, see Configure the Connector and Data Source and Configure Your
Custom Connector and Data Source in the 5 Day Guides at
http://www.simba.com/resources/sdk/documentation/.

C# On Windows

This section explains how to package connectors written in C#.

Packaging Connectors Built With Simba.NET

This section explains how to package connectors written in C# with the Simba.NET
component.

1. Include the C# connector DLL.
2. Include Simba.DotNetDSI.dll and Simba.ADO.Net.dll from [INSTALL_

DIRECTORY]\Bin\Win.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
183

Productizing Your Connector

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

3. Using gacutil.exe, install the following DLLs to the Global Assembly Cache
(GAC) on the target machine:

l Simba.DotNetDSI.dll

l Simba.ADO.Net.dll

l Driver’s C# DLL

The DLLs can be installed using the following commands:
l gacutil.exe /i Simba.DotNetDSI.dll

l gacutil.exe /i Simba.ADO.Net.dll

l gacutil.exe /i YourDriver.dll

If you need to reinstall a DLL to the GAC, you have to uninstall it first using the
following command:

l gacutil.exe /u Simba.DotNetDSI

Note:

The .dll extension is removed from the name when uninstalling a
DLL from GAC.

Packaging Connectors Built With Simba.NET using .NET Core

l Include the entire contents of the output directory, except .pdb files.
l This will include your C# connector .dll, Simba.DotNetDSI.dll,
Simba.ADO.NET.dll, and all other dependency .dll files.

l Unlike .NET Framework providers, this does not need to be installed in the GAC.

Packaging Connectors Built With Simba.NET using .NET Standard

l Providers built targeting .NET Standard should be packaged the same as .NET
Core providers. However, they may also be installed in the GAC to be used by
.NET Framework applications.

l Install Simba.DotNetDSI.dll, Simba.ADO.NET.dll, and
YourDriver.dll into the GAC as described earlier.

Packaging Connectors Built with CLI DSI and Simba SQLEngine

This section explains how to package connectors written in C# with the CLI DSI
component. The Simba SQLEngine component can optionally be included.

1. Include the requirements listed in the section C++ OnWindows
2. Include connector’s CLIDSI DLL in addition to the C# connector DLL.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
184

Productizing Your Connector

http://www.magnitude.com/

3. Include Simba.DotNetDSI.dll and Simba.DotNetDSIExt.dll from
[INSTALL_DIRECTORY]\Bin\Win.

4. In the registry, ensure the Driver entry is the full path to the C++ CLIDSI DLL, not
to the C# DLL.

5. Using gacutil.exe, install the following DLLs to the Global Assembly Cache
(GAC) on the target machine:

l Simba.DotNetDSI.dll

l Simba.DotNetDSIExt.dll

l Driver’s C# DLL

The DLLs can be installed using the following commands:
l gacutil.exe /i Simba.DotNetDSI.dll

l gacutil.exe /i Simba.DotNetDSIExt.dll

l gacutil.exe /i YourDriver.dll

If you need to reinstall a DLL to the GAC, you have to uninstall it first using the
following command:

l gacutil.exe /u Simba.DotNetDSI (NOTE: the .dll extension is removed from
the name when uninstalling a DLL from GAC)

C# On Linux, Unix, and macOS

Packaging is the same as .NET Core in the above section.

Java Packaging on Windows

This section explains how to package connectors written in Java and built on the
Windows platform.

Packaging JDBC Connectors Built With SimbaJDBC

This section explains how to package Java connectors built with the SimbaJDBC
component.

1. Include the SimbaJDBC JAR file located at [INSTALL_
DIRECTORY]\DataAccessComponents\Lib

2. Include the Java connector’s JAR file.
3. If your connector uses the Java Simba SQLEngine, include the

SimbaSQLEngine JAR file located at [INSTALL_
DIRECTORY]\DataAccessComponents\Lib.

Packaging Java ODBC Connectors Built With JNI DSI and/or SQLEngine

This section explains how to package JDBC connectors built with the SimbaJDBC
component.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
185

Productizing Your Connector

http://www.magnitude.com/

1. Include the requirements listed in the section C++ OnWindows
2. Include the connector’s JNIDSI DLL and the Java connector JAR file.
3. In the registry, ensure the Driver entry is the full path to the C++ CLIDSI DLL, not

the connector’s Java JAR file.
4. Create the following key in the Windows registry:

l For 32-bit connectors on 32-bit machines, or 64-bit drivers on 64-bit
machines, create the key HKEY_LOCAL_
MACHINE\SOFTWARE\Simba\Quickstart\Driver, replacing Simba with
your company name and Quickstart with your connector name.

l For 32-bit connectors on 64-bit machines, create the key HKEY_LOCAL_
MACHINE\SOFTWARE\Wow6432Node\Simba\Quickstart\Driver,
replacing Simba with your company name and Quickstart with your
connector name.

Add the following entry. If multiple options exist, separate them by a “|”
character. For example:
-Djava.class.path=<full path>\JavaQuickstart.jar>|-Xdebug:

l JNIConfig=<Java Virtual Machine (JVM) Configuration
options>

5. If -Djava.class.path is not specified in the JNIConfig, add or modify the
CLASSPATH environment variable:

l CLASSPATH=<Full path of the connector’s JAR file>

For example: <full path>\JavaQuickstart.jar

6. Add or modify the PATH environment variable to include the location of the Java
executable, as well as the 64-bit or 32-bit Java Virtual machine (Depending on
the bitness of JNIDSI connector).

Note:

For a Java Runtime Environment (JRE), the location of the JVM on 32-bit
Windows is usually in <JRE Path>\bin\client while on 64-bit it is usually in
<JRE Path>\bin\server.

Java Packaging On Linux, Unix, and macOS

This section explains how to package connectors written in Java and built on Linux,
Unix, or macOS platforms.

Packaging JDBC Connectors Built With SimbaJDBC

This section explains how to package Java connectors built with the SimbaJDBC
component.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
186

Productizing Your Connector

http://www.magnitude.com/

1. Include the SimbaJDBC JAR file located at [INSTALL_
DIRECTORY]\DataAccessComponents\Lib.

2. Include the Java connector’s JAR file.
3. If your connector uses the Java Simba SQLEngine, include the

SimbaSQLEngine JAR file located at [INSTALL_
DIRECTORY]/DataAccessComponents/Lib.

Packaging Java ODBC Connectors Built With JNI DSI and/or SQLEngine

This section explains how to package Java connectors written in Java and built with
the SimbaJDBC component.

1. Include the requirements listed in the section C++ On Linux, Unix, and macOS.
2. Include the connector’s JNIDSI library and the Java connector JAR file.
3. In the .ini file, ensure the Driver entry is the full path to the C++ CLIDSI DLL, not

the connector’s Java JAR file.
4. Add the following entry to your connector's .ini configuration file. If multiple

options, separate them with a “|” character.
l JNIConfig=<Java Virtual Machine (JVM) Configuration
options>

For example, -Djava.class.path=<full
path>/JavaQuickstart.jar>|-Xdebug

5. If -Djava.class.path is not specified in the JNIConfig, add or modify the
CLASSPATH environment variable:

l CLASSPATH=<Full path of the connector’s JAR file>

For example: <full path>\JavaQuickstart.jar

6. Add or modify the LD_LIBRARY_PATH (or equivalent) environment variable to
include the location of the Java executable, as well as the 64-bit or 32-bit Java
Virtual machine, depending on the bitness of JNIDSI connector.

For a Java Runtime Environment (JRE), the location of the JVM on 32-bit Unix is
usually in <JRE Path>/lib/<architecture>/client, where architecture
is amd64 on 64-bit linux, or i386 on 32-bit linux, or other values on other
platforms.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
187

Productizing Your Connector

http://www.magnitude.com/

Note:

The library path environment variable has the following values on the
different platforms:

l LD_LIBRARY_PATH on most Linux platforms
l SHLIB_PATH on HP/UX
l LIBPATH on AIX
l DYLD_LIBRARY_PATH on macOS

Related Topics

Including Error Message Files

Adding a DSN Configuration Dialog

You can add a custom dialog in the ODBC Data Source Administrator. This dialog is
displayed when users click Add, Remove, or Configure. By using your custom dialog,
customers can perform custom configuration of the ODBC connection without having
to modify the Windows registry or by editing the .ini files on Unix or Linux platforms.

To create a custom DSN configuration dialog, implement the connector setup DLL API
by implementing and exporting the ConfigDSN function:

BOOL INSTAPI ConfigDSN(

HWND in_parentWindow,
WORD in_requestType,
LPCSTR in_driverDescription,
LPCSTR in_attributes)

You can implement this in the connector shared library, or as a separate shared
library.

Note:

l If you build the configuration dialog as a separate DLL, we recommend
changing the extension from.dll to .cnf, as this is conventional practice.

l The QuickStart sample project provides an example of implementing
ConfigDSN and exporting it from within the connector DLL.

To get your setup function recognized by the ODBC Data Source Administrator, you
must add the Setup key to your connector’s entry in ODBCINST.INI in the registry.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
188

Productizing Your Connector

http://www.magnitude.com/

For an example of adding the Setup key, see C++ Packaging for Windows in the
Simba SDK Deployment Guide.

For more information on creating a DLL, refer to the Setup DLL API Reference and the
Installer DLL API Reference Function in the Microsoft ODBC Programmer’s
Reference.

Rebranding Your Connector

The sample connectors are branded with a default connector name, for example
Quickstart, and the default company name Simba. These names are visible to
customers in the following locations:

l The Windows registry
l The .ini configuration files on Linux, Unix, and macOS
l The vendor name in error messages

The Simba SDK allows you to rebrand your custom connector with the connector
name and company name of your choice. The 5 Day Guides at
http://www.simba.com/resources/sdk/documentation/ provide detailed instructions on
how to use the rebranding functionality in Windows, Linux, Unix, and macOS.

Using INI Files for Connector Configuration on Windows

OnWindows platforms, ODBC connectors normally retrieve configuration information
from the Windows registry. As an alternative, your connector can retrieve its
connector-specific configuration information from an .ini file. This enables customers
to deploy multiple versions of the DLL, each with a different version of the connector-
specific configuration information. You can also specify that your connector to look for
the .ini file initially, then fall back to the registry if the file cannot be found.

You can use a configuration file, for example simba.quickstart.ini, to specify
the information that is normally retrieved from the
SOFTWARE\Simba\Quickstart\Driver registry key.

Note:

l The registry key and the file name can be rebranded with your own
company and connector name, but this example uses simba and
Quickstart for simplicity.

l This feature does not include using .ini files for information that is
stored in the \ODBC\ODBC.INI and \ODBC\ODBCINST registry keys.
You still need to configure these registry keys for your custom connector.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
189

Productizing Your Connector

https://msdn.microsoft.com/en-us/library/ms716480(v=vs.85).aspx
https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiRwua6x6bPAhVD9WMKHbreAgAQFggcMAA&url=https%3A%2F%2Fmsdn.microsoft.com%2Fen-us%2Flibrary%2Fms711031(v%3Dvs.85).aspx&usg=AFQjCNFskxnFOoFaC1armassFTIVfO3svA&bvm=bv.133700528,d.cGc
http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

Step 1 - Create the simba.quickstart.ini file

Create a text file that contains all the information in the connector's HKEY_LOCAL_
MACHINE\SOFTWARE\Simba\Quickstart\Driver registry key. The file has the same
format as the simba.quickstart.ini file on Linux and Unix platforms.

Example - simba.quickstart.ini file

[Driver]
ErrorMessagesPath=C:\Drivers\Quickstart\Maintenance\10.1\Prod
uct\ErrorMessages
UnicodeDataPath=C:\Drivers\Quickstart\Maintenance\10.1\Produc
t\Setup
DriverLocale=en-US
DriverManagerEncoding=UTF-16
LogLevel=3
LogNamespace=
LogPath=C:\SimbaLogs

Step 2 - Update Simba::DSI::DSIDriverFactory()

In the Simba::DSI::DSIDriverFactory()method in the Main_Windows.cpp
file, replace the call to SetConfigurationBranding() with
SetConfigurationRegistryKey(), SetConfigurationIniFile(), and
SetModuleId(). These methods must be called before any parameter from the
SimbaSettingReader is accessed, because the configuration is loaded only once,
and cannot be reloaded.

You also need to provide the module ID, using the value provided to the DLLMain()
function that is called when the connector is loaded.

Example - DSIDriverFactory

//==============================
/// @brief Creates an instance of IDriver for a connector.
/// The resulting object is made available through
DSIDriverSingleton::GetDSIDriver().
/// @param out_instanceID Unique identifier for the IDriver
instance.
/// @return IDriver instance. (OWN)
//==============================
IDriver* Simba::DSI::DSIDriverFactory(simba_handle& out_
instanceID)
{

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
190

Productizing Your Connector

http://www.magnitude.com/

out_instanceID = s_quickstartModuleId;

//Set the name of the INI file from which to load the
connector-specific configuration.
// If a file name is specified here, the SEN SDK will
first try to load the connector specific
// configuration from that INI file. If it can't find
the file, it will fall
// back to the registry, as described below.
// You can specify a relative path for the file name.
If the module ID (see below) is
// 0, then the path is relative to the current
working directory. If the module
// ID is non-zero, the path is relative to the
// directory where the DLL is located.

#if defined(SERVERTARGET)
SimbaSettingReader::SetConfigurationIniFile
(“simbaserver.quickstart.ini”);
#else
SimbaSettingReader::SetConfigurationIniFile
(“simba.quickstart.ini”);
#endif

// Set the module identifier provided in DLLMain().
//This allows the SDK to determine in which
// directory the connector DLL is located, which is
used to load INI file defined
// as relative path as described above.

SimbaSettingReader::SetModuleId(s_
quickstartModuleId);

// Use this setting to specify the registry key that
is used if the
// connector cannot find the .ini file.
// For example, if you use the value
"Simba\Quickstart", then

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
191

Productizing Your Connector

http://www.magnitude.com/

// the connector looks for the configuration
information at
// HKLM\SOFTWARE\Simba\Quickstart, or
//
HKLM\SOFTWARE\SOFTWARE\Wow6432Node\Simba\Quickstart
if
// running a 32-bit connector on 64-bit Windows).
// If the DSII is compiled as a connector, then it
will use \Driver as the final
// value in the registry path.
// If the DSII is compiled as a server, then it will
use \Server as the final
// value in the registry path.
// For example, a 64-bit connector would use
// HKLM\SOFTWARE\Simba\Quickstart\Driver to look up
the registry keys such as ErrorMessagesPath.

SimbaSettingReader::SetConfigurationRegistryKey
(“Simba\\Quickstart”);

// Set the server branding for this data source. This
will only be used if the DSII is compiled
// as a server and then installed as a service.
#if defined(SERVERTARGET) && defined(WIN32)
SimbaSettingReader::SetServiceName
("SimbaQuickstartService");
#endif

return new QSDriver();

}

Logging to Event Tracing for Windows (ETW)

By default, the Simba SDK logging functionality writes events and messages to text
files. You can develop your custom ODBC or JDBC connector log events and
messages to Event Tracing for Windows (ETW) instead. You can also enable it to
switch between file and ETW logging at runtime.

The basic steps are as follows:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
192

Productizing Your Connector

http://www.magnitude.com/

1. Define the provider GUID in your connector code
2. Use the ETWLogger Class in your connector code

For an example of how to implement ETW logging in the QuickStart sample OBBC
connector, see Example: Implementing ETW Logging.

Step 1 - Define the Provider GUID in your Connector Code

When creating a manifest file to define your provider, you created a provider GUID.
Add this GUID to the connector's main header file. If you have both 32 and 64-bit
connectors, you need to include both GUIDs. If your connector code is used on
multiple platforms, ensure the GUID is defined just for Windows platforms. For
example:

#if defined(_WIN64)
/// The 64-bit connector specific ETW provider GUID.
const GUID PROVIDER_GUID = {0x69bacf08, 0x09d0, 0x400a,
{0xab, 0xd8, 0x52, 0x06, 0xd4, 0xbd, 0x79, 0x39}};
#elif defined(WIN32)
/// The 32-bit connector specific ETW provider GUID.
const GUID PROVIDER_GUID = {0x9bbc191d, 0x1d80, 0x40d1,
{0xad, 0xab, 0xe1, 0x1b, 0x97, 0x3a, 0x1e, 0x90}};
#endif

Step 2 - Use the ETWLogger Class in your Connector Code

Change your custom connector code to use the ETWLogger class instead of the
DSIFileLogger class.

For example, in the Quickstart sample connector you would have the following
QSDriver constructor

QSDriver::QSDriver() : DSIDriver(), m_driverLog(new ETWLogger
(PROVIDER_GUID))
{

ENTRANCE_LOG(m_driverLog, "Simba::Quickstart",
"QSDriver", "QSDriver");
SetDriverPropertyValues();
...

}

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
193

Productizing Your Connector

http://www.magnitude.com/

Further Considerations

You may want to refine the example shown in Example: Implementing ETW Logging
with the additional functionality described in this section.

Understanding Log Levels in Windows ETW Logging

The Simba SDK supports six different log levels for file-based logging, and four
different log levels for ETW-based logging. The following table shows the mapping
between ETW log level and the LogLevel setting in the Windows registry or .ini file.

LogLevel setting ETW Log Level

1 1 (Fatal)

2 2 (Error)

3 3 (Warning)

4,5,6 4 (Debug, Information, Trace)

For example, if you configure LogLevel to 6, then Debug, Information, and Trace logs
are all logged as level 4 in the ETW logger.

Increasing the File Size

By default, the maximum size of the log files for ETW logging is 1028 KB. Subsequent
events are overwritten in the file. In order to see more events in the log file, you may
want to increase the maximum file size by selecting properties in the Event Viewer.

Set an Activity ID

By default, the activity ID for the events is set to 0. To change this activity ID to the
string of your choice, use ETWLogger::SetActivityId().

Enable logging for both 32-bit and 64-bit connectors

If you plan to ship a 32-bit and a 64-bit version of your connector, you need to create a
manifest file for each version. For example, create a QuickStart32.man and a
QuickStart64.man.

Important:

Be sure you create a different GUID for the 32-bit and the 64-bit manifest files.
Each manifest file must have its own, unique GUID.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
194

Productizing Your Connector

http://www.magnitude.com/

In the source code, define each provider GUID for the correct platform.

Example:
#if defined(_WIN64)
/// The 64-bit connector specific ETW provider GUID.
const GUID PROVIDER_GUID = {0x69bccf01, 0x08d0, 0x400a, {0xbb,
0xc8, 0x52, 0x06, 0xb4, 0xbd, 0x72, 0x39}};
#elif defined(WIN32)
/// The 32-bit connector specific ETW provider GUID.
const GUID PROVIDER_GUID = {0x9bbc737c, 0x1d70, 0x40d9, {0xad,
0xab, 0xe1, 0x8b, 0x17, 0x3a, 0x4e, 0x20}};
#endif

Allowing the user to switch between ETW and File logging

If you want allow your customers to switch between ETW logging and file logging, you
can create a registry key that defines the type of logging. Then in your code, instantiate
the correct logging class depending on the registry setting.

Related Topics

Example: Implementing ETW Logging

Example: Implementing ETW Logging

This example shows one way that you could configure ETW logging for the QuickStart
connector. The steps are:

l Step 1 - Create a Manifest File for the QuickStart Connector
l Step 2 - Create the Master Resources File
l Step 3 - Update the QuickStart Connector Code
l Step 4 - Configure ETW to Log QuickStart Events
l Step 5 - Generate Loggable Activity in the QuickStart Connector

Note:

This examples helps you get started. For more details, see Further
Considerations.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
195

Productizing Your Connector

http://www.magnitude.com/

Step 1 - Create a Manifest File for the QuickStart Connector

Create a manifest file to define the QuickStart connector as an event provider, then
compile the file to generate resources.

To create the manifest file:

1. Copy the following XML into a text editor:

<?xml version="1.0" encoding="UTF-16"?>
<instrumentationManifest xsi:s-
chem-
aLoca-
tion="http://schemas.microsoft.com/win/2004/08/events
eventman.xsd" xmlns-
s="http://schemas.microsoft.com/win/2004/08/events"
xmlns:win-
="h-
ttp://manifests.microsoft.com/win/2004/08/windows/events"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:trace-
="h-
ttp://schemas.microsoft.com/win/2004/08/events/trace">
<instrumentation>

<events>
<provider name="DriverName" guid="{MYGUID}" sym-

bol="DriverName" resourceFileName="Path to connector dll"
messageFileName="Path to connector dll">

<events>
<event symbol="DebugInfoTraceEvent" value="0"

version="0" channel="Admin" level="win:Informational" tem-
plate="AllEventsTemplate" mes-
sage="$(string.DriverName.event.0.message)">

</event>
<event symbol="ErrorEvent" value="1" ver-

sion="0" channel="Admin" level="win:Error" tem-
plate="AllEventsTemplate"
message="$(string.DriverName.event.1.message)">

</event>
<event symbol="FatalEvent" value="2" ver-

sion="0" channel="Admin" level="win:Critical" tem-
plate="AllEventsTemplate"
message="$(string.DriverName.event.2.message)">

</event>

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
196

Productizing Your Connector

http://www.magnitude.com/

<event symbol="WarnEvent" value="3" version="0"
channel="Admin" level="win:Warning" tem-
plate="AllEventsTemplate" mes-
sage="$(string.DriverName.event.3.message)">

</event>
</events>
<levels>
</levels>
<channels>

<channel name="Admin" chid="Admin" sym-
bol="Admin" type="Admin" enabled="true">

</channel>
</channels>
<templates>

<template tid="AllEventsTemplate">
<data name="message" inType-

e="win:UnicodeString" outType="xs:string">
</data>

</template>
</templates>

</provider>
</events>

</instrumentation>
<localization>

<resources culture="en-US">
<stringTable>
<string id="level.Warning" value="Warning">
</string>
<string id="level.Informational" value-

e="Information">
</string>
<string id="level.Error" value="Error">
</string>
<string id="level.Critical" value="Critical">
</string>
<string id="DriverName.event.3.message" value-

e="%1">
</string>
<string id="DriverName.event.2.message" value-

e="%1">
</string>

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
197

Productizing Your Connector

http://www.magnitude.com/

<string id="DriverName.event.1.message" value-
e="%1">

</string>
<string id="DriverName.event.0.message" value-

e="%1">
</string>

</stringTable>
</resources>

</localization>
</instrumentationManifest>

2. Save the file as Quickstart.man.
3. Replace every instance of DriverName with QuickStart.
4. Find and replace Path to connector dll with the complete path to your

connector. Be sure to use the correct DLL for debug, platform, and bitness.
5. Generate a new GUID and use it to replace MYGUID:

a. In Visual Studio, select Tools > Create Guid.
b. Select option 3 then select Copy.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
198

Productizing Your Connector

http://www.magnitude.com/

c. Paste the first line into the manifest file, and save the second line to paste
into your source code.

6. Save and close the Quickstart.man file.

To compile the manifest file:

1. Open a command prompt and navigate to the directory where your
Quickstart.man file is stored.

2. Run the following command:
"C:\Program Files (x86)\Windows Kits\8.1\bin\x64\MC"
Quickstart.man -um -z QuickstartEvents

The manifest file is compiled and the resource files are generated:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
199

Productizing Your Connector

http://www.magnitude.com/

Step 2 - Create the Master Resources File

Create a master resources file to consume the resources you generated in the
previous step.

To create the master resources file:

1. In the Source/Resources folder of your Visual Studio project, create a text file
called Master.rc.

2. Add this file to the connector's Visual Studio project:
a. Right click the Resources folder in the connector project in Visual Studio

and select Add > Existing Items
b. Browse to Resources folder, select the Master.rc file that you created, and

click Add.
3. In a text editor, open the Master.rc file and #include all of the .rc files in the

QuickStart project. Also include the files you generated in the previous step.
Save and close the file.

Example: Master.rc file
#include "Dialogs.rc"
#include "QuickstartVersion.rc"
#include "QuickstartEvents.rc"

4. In a text editor, open the Visual Studio project and remove references to any
resource files other than the Master.rc file.

Example: Remove the lines shown below
<ItemGroup>
<ResourceCompile Include="Resources\Dialogs.rc" />
<ResourceCompile Include="Resources\Master.rc" />
<ResourceCompile Include="Resources\QuickstartVersion.rc"
/>
</ItemGroup>

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
200

Productizing Your Connector

http://www.magnitude.com/

5. Update the QuickStart connector project:
a. In Visual Studio, right-click the QuickStart project and select Properties.
b. Select Configuration Properties > Resources and select General.
c. Change the Resource File Name field to $(IntDir)\Master.res .
d. Click Apply.

Step 3 - Update the QuickStart Connector Code

Modify the QuickStart connector code to use the ETWLogger class instead of the
default file logger class.

To use the ETW logger class:

1. In Visual Studio, open the QuickStart solution, then open the file Core > Include
> QSDriver.h.

2. Define the GUID you created earlier. This will be the connector's provider GUID.

Example: In QSDriver.h
namespace Simba
{

namespace Quickstart

{

const GUID PROVIDER_GUID = { 0xf77f8f1e, 0xb189, 0x49ed, { 0xa3, 0xd9,
0xab, 0x72, 0x39, 0x19, 0xd2, 0x17 } };

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
201

Productizing Your Connector

http://www.magnitude.com/

3. Open the QSDriver.cpp file and add the following line:
#include "ETWLogger.h"

4. In the QuickStart connector's constructor, change the existing logger to
ETWLogger. Pass in the PROVIDER_GUID.

Example:
QSDriver::QSDriver() : DSIDriver(), m_driverLog(new
ETWLogger(PROVIDER_GUID))

Step 4 - Configure ETW to Log QuickStart Events

Register the connector with ETW and enable logging.

To configure ETW to log QuickStartEvents:

1. Register the QuickStart connector as an ETW provider:
a. Open a command prompt with administrator privileges.
b. In the directory containing the Quickstart.man file, type the following

command:
wevtutil im Quickstart.man /resourceFilePath:"C:\Simba
Technologies\SimbaEngineSDK\10.1\Examples\Source\Quick
start\Bin\Windows_
vs2013\debug32md\QuickstartDSIIODBC32.dll"
/messageFilePath:"C:\Simba
Technologies\SimbaEngineSDK\10.1\Examples\Source\Quick
start\Bin\Windows_
vs2013\debug32md\QuickstartDSIIODBC32.dll"

2. Ensure the connector is configured for logging by setting the following registry
key to 6:>

l Use HKEY_LOCAL_MACHINE\SOFTWARE\Simba\Quickstart\Driver
for a 32-bit connector on a 32-bit machine or a 64-bit connector on a 64-bit
machine

l Or, use HKEY_LOCAL_
MACHINE\SOFTWARE\Wow6432Node\Simba\Quickstart\Driver\LogL

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
202

Productizing Your Connector

http://www.magnitude.com/

evel for a 32-bit connector on a 64-bit machine

3. Open Event Viewer by typing Event Viewer in the Start Menu.
4. In Event Viewer, expand Applications and Services Logs > Simba > DSII >

Quickstart and select Admin.

Note:

If nothing appears under Applications and Services Logs, wait a few
minutes for Event Viewer to populate.

5. Right-click on Admin and select Enable Log.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
203

Productizing Your Connector

http://www.magnitude.com/

Step 5 - Generate Loggable Activity in the QuickStart Connector

To see events logged in ETW, you need to configure the connector to start logging,
then use it for something such as establishing a connection.

To create activity that will be logged:

1. Navigate to the folder containing the ODBC Test application, by default:
C:\Program Files (x86)\Microsoft Data Access SDK 2.8\Tools

2. Navigate to the folder that corresponds to your connector’s architecture: amd64,
ia64 or x86.

Example:

If you built the 32-bit version of your connector on a 64-bit machine, select the
x86 version.

3. Click one:
l odbcte32.exe to launch the ANSI version
l Or, odbct32w.exe to launch the Unicode version.

Important:

Make sure that you run the correct version of the ODBC Test tool for
ANSI or Unicode and 32-bit or 64-bit.

4. In the ODBC Test tool, click Conn > Full Connect.
5. In Event Viewer, navigate to Applicationsand Services Logs > Simba > DSII >

Quickstart and select Admin.
6. The trace logs are recorded as events (you may need to wait a few minutes):

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
204

Productizing Your Connector

http://www.magnitude.com/

Related Topics

Logging to Event Tracing for Windows (ETW)

For information on rebranding the Simba registry key to your own company name, see
Rebranding Your Connector.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
205

Productizing Your Connector

http://www.magnitude.com/

Testing your DSII

During the development of your connector, you may want to test its functionality using
applications such as Microsoft Excel on Windows or iODBCTest on Linux. This section
explains how to use different applications to test your connector. It also explains how
to resolve common problems and errors messages that you may encounter at different
stages of development.

Testing On Windows

This section explains how to use Microsoft Access, Microsoft Excel, and the
ODBCTest tool to test your custom ODBC connector.

Testing With Microsoft Access

Running your connector against Microsoft Access is a good test to prove basic
functionality. Microsoft Access uses much of the ODBC API, including many of it's
edge cases.

Note:

To get the widest test coverage of the ODBC API, test your connector under
Microsoft Access by loading your data as linked tables.

To Test Your Custom ODBC Connector with Microsoft Access:

1. Open Access and create a new Blank Database.
2. Select External Tab -> More -> ODBC Database.
3. In the Get External Data – ODBC Database dialog, select Link to the data

source by creating a linked table.
4. In the Select Data Source dialog, select the Machine Data Source table and

choose your DSN. Click OK.
5. In the Link Tables dialog, select the tables you want to link to. Click OK.
6. In the Select Unique Record Identifier dialog, click OK without choosing any

specific field.
7. In the All Table panel, right click on a table name and click Open.

The data from the table appears in Microsoft Access.

Testing with Microsoft Excel

You can test your data source with Microsoft Excel by importing data using the Data
Connection Wizard.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
206

Testing your DSII

http://www.magnitude.com/

To Test Your Custom ODBC Connector with Microsoft Excel:

1. Open Excel and create a new blank workbook.
2. Select Data -> From Other Sources -> From Data Connection Wizard.
3. In the Data Connection Wizard dialog, select ODBC DSN and click Next.
4. In the ODBC data sources box, Select your DSN and click Next.
5. In the Table box, select a table and click Next and then click Finish.
6. In the Import Data dialog, select Table for how you want to view the data in the

workbook and click OK.

The data from the table appears in your Excel workbook.

Testing with ODBCTest

ODBCTest is a test application provided by Microsoft as part of the Microsoft Data
Access Components (MDAC) SDK and the Platform SDK. For more information about
MDAC, see What is MDAC?.

This application allows you to manually execute any SQL query. You can also use it to
directly call any method in the ODBC API. The full ODBC API is exposed through the
ODBCTest menus, allowing you to walk through each step of an ODBC API call and
viewing the results in real time.

The MDAC installation includes both ANSI and Unicode-enabled versions of ODBC
Test, for both 32-bit and 64-bit systems. The versions are clearly marked in the
Programs menu:

Note:

l Select the correct version of MDAC for the bitness of your connector and
ANSI or Unicode requirements.

l On 64-bit Windows, ensure that your DSNs are configured correctly.

Running your connector under the debugger with ODBCTest configured as the launch
application is an excellent way to test. You can set breakpoints in your DSII, and break

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
207

Testing your DSII

http://www.magnitude.com/

into them as various ODBC calls trigger corresponding DSII calls. You can break at
every DSII API call, and step through the execution of each of your DSII methods to
track down problems with precision.

For more information on using Visual Studio to debug into your custom ODBC
connector with ODBCTest, see the section Debug the Custom ODBC Connector in the
5 Day Guides at http://www.simba.com/resources/sdk/documentation/.

To Test Your Custom ODBC Connector with ODBCTest:

Before running this test, ensure you have already configured a DSN for your
connector. For more information on creating a DSN in the Windows registry for your
custom ODBC connector, see Update the Windows Registry in the 5 Day Guides at
http://www.simba.com/resources/sdk/documentation/.

1. Start the ODBCTest application, ensuring you run the correct version for ANSI or
Unicode and 32-bit or 64-bit.

2. To configure the application to use ODBC 3.52 menus, select Tools -> Options
menu.

3. Select the ODBC Menu Version -> ODBC 3.x.
4. Create a connection to your connector using the appropriate DSN you already

configured.
5. Select Connect -> Full Connect.

This option allocates the environment and connection handles, then opens the
connection.

6. Locate your DSN in the data source list.
7. Select OK. A new window appears with the message “Successfully connected to

DSN ‘<your connector name>”. The top half of the window allows you to enter
SQL queries to be executed. The bottom half displays the results.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
208

Testing your DSII

http://www.simba.com/resources/sdk/documentation/
http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

Note:

If you see the error “SQLDriverConnect returned: SQL_ERROR=-1”, use
the following tips for troubleshooting. This error usually occurs because
the Windows Driver Manager cannot find or load the requested
connector’s DLL. Check the following:

l Does your DSN exist in the registry both as a registry key in
ODBC.INI and as a value in ODBC.INI\ODBC Data Sources?

l Does your connector exist in the registry both as a registry key
under ODBCINST.INI and as a value in ODBCINST.INI\ODBC
Drivers?

l Does your DSN have a Driver entry?
l At the path specified in the DSN’s Driver entry, does the specified
DLL exist?

8. Enter a simple SQL query by selecting Statement -> SQLExecDirect. Select OK
on the resulting dialog.

9. From the Results menu, select GetDataAll.
10. Review the results.
11. Select Catalog -> SQLTables. Select OK on the resulting dialog.

SQL Catalog functions work only if you have implemented the appropriate
MetadataSources.

12. Select Results -> GetDataAll.
13. Review the results

Related Topics

Debug the Custom ODBC Connector in the 5 Day Guides at
http://www.simba.com/resources/sdk/documentation/

Update the Windows Registry in the 5 Day Guides at
http://www.simba.com/resources/sdk/documentation/

Testing On Linux, Unix, and MacOS

This section explains how you can test your custom ODBC connector in Linux, Unix,
and macOS platforms.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
209

Testing your DSII

http://www.simba.com/resources/sdk/documentation/
http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

iODBCTest and iODBCTestW

The utilities iodbctest and iodbctestw are included with the iODBC driver manager
installation. You can use one these utilities to establish a test connection with your
connector and your DSN. Use iodbctest to test how your connector works with an
ANSI application, and use iodbctestw to test how your connector works with a Unicode
application.

For more information on how to use this utility, see www.iodbc.org. For an example of
how to use iODBCTest, see the section Connect to the Data Source in the Linux or
macOS version of the 5 Day Guides at
http://www.simba.com/resources/sdk/documentation/.

To Test Your Custom ODBC Connector with iODBCTest or iODBCTestW:

1. Use the following command to run iodbctest or iodbctestw:
./iodbctest

Or, ./iodbctestw

Note:

There are 32-bit and 64-bit installations of the iODBC driver manager
available. If you have only one version of the driver manager installed,
you will have the appropriate version of iodbctest (or iodbctestw).
However, if you have both 32-bit and 64-bit versions installed, you will
need to ensure that you are running the version from the correct
installation directory.

2. The program will ask you to enter an ODBC connect string. Type ? if you do not
remember the name of your DSN. Your ODBC connect string has the following
format:
DSN=<your_DSN_name>;UID=<user_id> (if
applicable);PWD=<your password> (if applicable)

3. If you have successfully connected, the prompt SQL> appears.
4. Test out some simple SELECT queries to see if your data is being retrieved

properly from your data source.

UnixODBC

iSql is a utility that is included with the UnixODBC driver manager installation. You can
use this utility to test a connection with your connector and your DSN.

For more information on how to use this utility, see www.iodbc.org.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
210

Testing your DSII

http://www.iodbc.org/
http://www.simba.com/resources/sdk/documentation/
http://www.unixodbc.org/
http://www.magnitude.com/

1. Run iSql:
./isql <DSN> <UID (if applicable)> <PWD (if applicable)>
<options (if applicable)>

2. If you have successfully connected, the prompt SQL> appears.
3. Test out some simple SELECT queries to see if your data is being retrieved

properly from your data source.

Related Topics

Connect to the Data Source in the Linux or macOS version of the 5 Day Guides at
http://www.simba.com/resources/sdk/documentation/

Driver Manager Encodings on Linux, Unix, and MacOS

On Linux, Unix, and macOS platforms, it is possible to specify that an application use a
particular driver manager. You may need to configure a connector to work with an
application, depending on which driver manager has been linked to the application.
The connector configuration file can set the DriverManagerEncoding setting to
indicate what type of Unicode is being passed to the connector from the driver
manager.

The following table outlines the Unicode setting to use:

Platform Bitness iODBC UnixODBC

Linux 32 UTF-32 UTF-16

Linux 64 UTF-32 UTF-16

Linux Itanium 64 UTF-32 UTF-16

AIX (PowerPC) 32 UTF-16 UTF-16

AIX (PowerPC) 64 UTF-32 UTF-16

macOS 32 UTF-32

macOS 64 UTF-32

HP-UX (Itanium) 32 UTF-32 UTF-16

HP-UX (Itanium) 64 UTF-32 UTF-16

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
211

Testing your DSII

http://www.simba.com/resources/sdk/documentation/
http://www.magnitude.com/

Platform Bitness iODBC UnixODBC

Solaris (SPARC) 32 UTF-32 UTF-16

Solaris (SPARC) 64 UTF-32 UTF-16

Solaris (x86) 32 UTF-32 UTF-16

Solaris (x86) 64 UTF-32 UTF-16

Solving Common Problems

This section contains information on debugging and troubleshooting your connector.

Process Can't Locate the DLL

A common cause of failure to connect to the data store is an ODBC connector or a
server process that cannot find the ICU DLL or shared object and refuses to start. This
can be frustrating to diagnose, so watch out for it. It is the general case of the
connector not being able to find all of its dependencies.

On Windows, this manifests itself as a “-1 Error”. One way to approach this problem is
with the Dependency Walker program. This free program identifies the items on which
an executable depends. For more information on dependency walker, see the MSDN
article at http://msdn.microsoft.com/en-us/magazine/bb985842.aspx. The application
can be installed from this location: http://dependencywalker.com/.

Connector Cannot Find the Data Store

Another cause of failure is the server or ODBC connector being unable to find your
data store. This is usually a case of configuring the connector or server incorrectly.
Make sure to include the right checks in your DSI implementation code to detect this
condition, and to return clear error messages to the user. This is a frustrating problem
to diagnose because the cause is often buried at the very bottom of the data access
stack.

Incomplete Types Compiler Warning

In order to prevent the possibility of memory leaks when using class templates such as
AutoPtr, AutoArrayPtr or AutoValueMap, a compiler warning will be generated
when they are instantiated on an incomplete type. If you encounter a compiler warning
about an incomplete type (the actual warning varies between compilers), simply
include the header file of the pre-declared class, and remove the pre-declaration. This
allows the compiler to have full access to the underlying class destructor of in the class
template AutoXXX destructor.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
212

Testing your DSII

http://msdn.microsoft.com/en-us/magazine/bb985842.aspx
http://dependencywalker.com/
http://www.magnitude.com/

Example: Code That Causes an Incomplete Type Warning
namespace MyDriver
{

class MyClass1; // Pre-declaration of MyClass1
class MyClass2
{

public:
MyClass2 {}
~MyClass2 {}
private:
// when this is cleaned up, the destructor of
MyClass1 will not be called :-(
Simba::Support::AutoPtr<MyClass1> m_obj;

}

}

Example: Resolving an Incomplete Type Warning
//To resolve the issue, include the header file for
// MyClass1 and remove the forward declaration:
#include MyClass1.h
namespace MyDriver
{

class MyClass2
{

public:
MyClass2 {}
~MyClass2 {}
private:
// when this is cleaned up, the destructor of
MyClass1 will be called :-)
Simba::Support::AutoPtr<MyClass1> m_obj;

}

}

Background on the Use of Incomplete Types

In C++, it is possible to pre-declare a class, then define pointer or reference to it. This
results in a pointer to an incomplete type. This is fine as long as the code does not

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
213

Testing your DSII

http://www.magnitude.com/

need to access any methods or attributes of the pre-defined class, including the
destructor. The C++ specification also allows you to delete the pointer to an
incomplete type. This may cause a problem, because the compiler does not know the
type of the referenced object, or how to call its destructor (it might not even have a
destructor). The compiler frees the memory of the object but cannot call its destructor
first. This could lead to memory leaks or other issues, such as a file remaining open.

The Simba SDK provides class templates such as AutoPtr, AutoArrayPtr or
AutoValueMap to help manage your dynamically created objects. These classes will
clean up an object when their instances are destroyed. However, if these class
templates are instantiated on an incomplete type, the compiler does not have access
to the underlying class’s destructor. Therefore, it cannot add a call to the destructor of
the underlying object when compiling the destructor of these class templates.s

Incorrect version of libc Library

When deploying a connector on AIX platforms, a supported version of the system
library libcmust be available on the machine. We recommend having the following
version of this library for each supported version of AIX:

AIX version

AIX 7.1 bos.rte.libc.7.2.0.2

AIX 6.1 bos.rte.libc.6.1.9.30

To download this library, see http://www-
01.ibm.com/support/docview.wss?uid=isg1fileset-870201775.

If this library does not exist on the deployment machine, the following errors may be
encountered:

l [unixODBC][Driver Manager]Can't initiate unicode conversion
l [unixODBC][Driver Manager]Can't open lib <path to connector library>: file not
found

l [ISQL]ERROR: Could not SQLConnect

Error Messages Encountered During Development

The following table lists some of the error messages you may encounter during the
development and testing phases of your DSII. For a complete list of error codes and
messages, see the files in [INSTALL_
DIRECTORY]\DataAccessComponents\ErrorMessages\.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
214

Testing your DSII

http://www-01.ibm.com/support/docview.wss?uid=isg1fileset-870201775
http://www-01.ibm.com/support/docview.wss?uid=isg1fileset-870201775
http://www.magnitude.com/

Error Message Meaning Solution

The license file <file>
could not be found.

The Simba.lic
license file is not in
the correct directory,
or you do not have a
valid license.

Install the license file, or re-
install it in the correct location.
For information on installing the
license file, see .

SQLDriverConnect
returned: SQL_
ERROR=-1

The Driver Manager
cannot find or load
the requested
connector’s DLL.

Make sure that your connector is
installed correctly and that the
DSN is correctly configured.

Specified driver could
not be loaded.

The connector is
missing some
dependencies.

Another possibility is
that all libraries have
not been compiled
with the same
bitness. Check that
your ICU, iODBC,
and your DSII
libraries are all the
same bitness.

Try listing the dynamic
dependencies of your connector
and ensuring all the
dependencies are available.

e.g.: ldd –d driver.so on Unix or
use Dependency Walker on
Windows.

Your evaluation period
has expired. Please
contact Simba
Technologies Inc. at
support@simba.com

Your license has
expired. Contact Simba for support.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
215

Testing your DSII

http://www.magnitude.com/

Error Message Meaning Solution

Error file not found:
<file>

The error message
file is missing or the
configuration value
used to locate the file
was not set.

Ensure the ErrorMessagesPath
configuration value exists and is
pointing at the correct directory
containing the error message
files.

On Windows, this configuration
is in the registry at
HKLM/Software/Simba/Driver
and on other platforms it is found
in the simba.ini config file.

The error message
<message> could not
be found in the en-US
locale.

Same as above.

Incomplete Type

A template class,
such as AutoPtr,
AutoArrayPtr or
AutoValueMap, is
used as a reference
to an incomplete
type.

See .

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
216

Testing your DSII

http://www.magnitude.com/

Contact Us

For more information or help using this product, please contact our Technical Support
staff. We welcome your questions, comments, and feature requests.

Note:

To help us assist you, prior to contacting Technical Support please prepare a
detailed summary of the Simba SDK version and development platform that
you are using.

You can contact Technical Support via the Magnitude Support Community at
www.magnitude.com.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
217

Contact Us

https://www.magnitude.com/
http://www.magnitude.com/

Third-Party Trademarks

Simba, the Simba logo, SimbaEngine, Simba SDK, and Simba Technologies are
registered trademarks of Simba Technologies Inc. in Canada, United States and/or
other countries. All other trademarks and/or servicemarks are the property of their
respective owners.

All other trademarks are trademarks of their respective owners.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
218

Third-Party Trademarks

http://www.magnitude.com/

Third Party Licenses

The licenses for the third-party libraries that are included in this product are listed
below.

ICU License - ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2014 International Business Machines Corporation and others

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, provided that the above copyright notice(s) and this
permission notice appear in all copies of the Software and that both the above
copyright notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUTWARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THEWARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR
ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR
ANY DAMAGESWHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTIONWITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software
without prior written authorization of the copyright holder.

All trademarks and registered trademarks mentioned herein are the property of their
respective owners.

OpenSSL

Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.

1. Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
219

Third Party Licenses

http://www.magnitude.com/

2. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

3. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

4. All advertising materials mentioning features or use of this software must display
the following acknowledgment:

5. "This product includes software developed by the OpenSSL Project for use in the
OpenSSL Toolkit. (http://www.openssl.org/)"

6. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without prior written
permission. For written permission, please contact openssl-core@openssl.org.

7. Products derived from this software may not be called "OpenSSL" nor may
"OpenSSL" appear in their names without prior written permission of the
OpenSSL Project.

8. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project for use in
the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "AS IS" AND ANY
EXPRESSED OR IMPLIEDWARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIEDWARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL
PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANYWAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim Hudson
(tjh@cryptsoft.com).

Original SSLeay License

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

All rights reserved.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
220

Third Party Licenses

http://www.openssl.org/
http://www.openssl.org/
http://www.magnitude.com/

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscape's SSL.

This library is free for commercial and non-commercial use as long as the following
conditions are adheared to. The following conditions apply to all code found in this
distribution, be it the RC4, RSA, lhash, DES, etc., code; not just the SSL code. The
SSL documentation included with this distribution is covered by the same copyright
terms except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in the code are not
to be removed. If this package is used in a product, Eric Young should be given
attribution as the author of the parts of the library used. This can be in the form of a
textual message at program startup or in documentation (online or textual) provided
with the package.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display
the following acknowledge:

4. "This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com)"

5. The word 'cryptographic' can be left out if the rouines from the library being used
are not cryptographic related :-).

6. If you include any Windows specific code (or a derivative thereof) from the apps
directory (application code) you must include an acknowledgment:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND ANY EXPRESS
OR IMPLIEDWARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
221

Third Party Licenses

http://www.magnitude.com/

ANYWAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

The license and distribution terms for any publicly available version or derivative of this
code cannot be changed. i.e. this code cannot simply be copied and put under another
distribution license [including the GNU Public License.]

Expat License

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUTWARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THEWARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NOINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTIONWITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Stringencoders License

Copyright 2005, 2006, 2007

Nick Galbreath -- nickg [at] modp [dot] com

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
222

Third Party Licenses

http://www.magnitude.com/

Neither the name of the modp.com nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIEDWARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIEDWARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANYWAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

This is the standard "new" BSD license:

http://www.opensource.org/licenses/bsd-license.php

dtoa License

The author of this software is David M. Gay.

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

Permission to use, copy, modify, and distribute this software for any purpose without
fee is hereby granted, provided that this entire notice is included in all copies of any
software which is or includes a copy or modification of this software and in all copies of
the supporting documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
IMPLIEDWARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT
MAKES ANY REPRESENTATION ORWARRANTY OF ANY KIND CONCERNING
THE MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY
PARTICULAR PURPOSE.

CityHash License

CityHash, by Geoff Pike and Jyrki Alakuijala

Copyright (c) 2011 Google, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
223

Third Party Licenses

http://www.magnitude.com/

without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUTWARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THEWARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTIONWITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

http:code.google.com/p/cityhash/

www.magnitude.com

©2024 Magnitude Software, Inc. All rights reserved.
224

Third Party Licenses

../Trademarks/http:code.google.com/p/cityhash/
http://www.magnitude.com/

	Contents
	Introducing the Simba SDK
	Creating a Custom Connector with the Simba SDK
	Example - Build an ODBC Connector for a SQL-Capable Data Store
	Example - Build a Client/Server Solution
	Implementation Options
	Library Components
	Sample Connectors and Projects
	Building Blocks for a DSI Implementation
	Getting Started
	Frequently Asked Questions

	Core Features
	Fetching Metadata for Catalog Functions
	Adding Custom Metadata Columns
	Overriding the Value of Default Properties
	Implementing Logging
	Adding Custom Connection and Statement Properties
	Handling Connections
	Creating and Using Dialogs
	Canceling Operations
	Handling Transactions
	Bulk Fetch in the C++ SDK
	Parsing ODBC and JDBC Escape Sequences
	Step 1: Implement Your Custom IReplacer
	Step 2: Create an Instance of ODBCEscaper
	Step 3: Ensure Additional Requirements are Met

	Errors, Exceptions, and Warnings
	Handling Errors and Exceptions
	Posting Warning Messages
	Including Error Message Files
	Localizing Messages

	Multithreading
	Using the Thread Class (C++ only)
	Using the ThreadPool Class
	Asynchronous ODBC Support
	Critical Section Locks
	Concurrency Support

	API Overview
	DSI API
	API Overview
	Lifecycle of DSI Objects
	Working With the Java API

	Data Types
	SQL Data Types in the C++ SDK
	Date, Time and DateTime Types
	Example: Variable-Length Data

	SQL DataTypes in the Java SDK
	Interval Conversions
	Adding Custom SQLDataType
	ODBC Custom C Data Types

	Specifications
	Supported Platforms
	Supported ODBC/SQL Functions
	Supported SQL Conformance Level

	Methods
	IStatement::ExecuteBatch()

	Compiling Your Connector
	Upgrading Your Makefile to 10.1
	C++ on Windows
	C# on Windows
	C# on Linux, Unix, and macOS
	Java on Windows
	C++ on Linux, Unix, and macOS

	Productizing Your Connector
	Packaging Your Connector
	Adding a DSN Configuration Dialog
	Rebranding Your Connector
	Using INI Files for Connector Configuration on Windows
	Logging to Event Tracing for Windows (ETW)

	Testing your DSII
	Testing On Windows
	Testing On Linux, Unix, and MacOS
	Driver Manager Encodings on Linux, Unix, and MacOS
	Solving Common Problems
	Error Messages Encountered During Development

	Contact Us
	Third-Party Trademarks
	Third Party Licenses

